[1]

Wageningen. 2019. Report on use of plastics in agriculture. Report. Schuttelaar & Partners, Netherlands. https://saiplatform.org/wp-content/uploads/2019/06/190528-report_use-of-plastics-in-agriculture.pdf

[2]

Dong H, Yang G, Zhang Y, Yang Y, Wang D, et al. 2022. Recycling, disposal, or biodegradable-alternative of polyethylene plastic film for agricultural mulching? A life cycle analysis of their environmental impacts Journal of Cleaner Production 380:134950

doi: 10.1016/j.jclepro.2022.134950
[3]

Kasirajan S, Ngouajio M. 2012. Polyethylene and biodegradable mulches for agricultural applications: a review. Agronomy for Sustainable Development 32:501−29

doi: 10.1007/s13593-011-0068-3
[4]

Sintim HY, Flury M. 2017. Is biodegradable plastic mulch the solution to agriculture's plastic problem? Environmental Science & Technology 51(3):1068−69

doi: 10.1021/acs.est.6b06042
[5]

Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, et al. 2012. Deterioration of potentially biodegradable alternatives to black plastic mulch in three tomato production regions. HortScience 47(9):1270−77

doi: 10.21273/HORTSCI.47.9.1270
[6]

Hill DE, Hankin L, Stephens GR. 1982. Mulches: Their effect on fruit set, timing and yields of vegetables. USA: Bulletin/Connecticut Agricultural Experiment Station.

[7]

Shogren RL, Hochmuth RC. 2004. Field evaluation of watermelon grown on paper-polymerized vegetable oil mulches. HortScience 39:1588−91

doi: 10.21273/hortsci.39.7.1588
[8]

Fessesden M. 2015. Most Plastic Trash Comes From Farms. Smart News, Smithsonian Magazine. www.smithsonianmag.com/smart-news/most-plastic-trash-comes-farms-heres-what-were-trying-do-about-it-180954873/

[9]

Markets and Markets. 2023. Agricultural Films Market by Type (LLDPE, LDPE, REclaim, EVA, HDPE), Application ((Greenhouse Films (Classic Greenhouse, Macro Tunnels), Silage Films (Silage Stretch Wraps), & Mulch Films (Transparent, Clear Mulches)), and Region - Global Forecast to 2028. Report. www.marketsandmarkets.com/Market-Reports/agricultural-mulch-films-market-741.html?gclid=CjwKCAjwx_eiBhBGEiwA15gLNzkPPqi__oySs2uqtTiYacozDD_Q8_XD3WqZiQy7jNJ1Ho-GN1mQ-BoCkJ4QAvD_BwE

[10]

Wang D, Xi Y, Shi XY, Zhong YJ, Guo CL, et al. 2021. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment. Environmental Pollution 286:117546

doi: 10.1016/j.envpol.2021.117546
[11]

Ngouajio M, Goldy R, Zandstra B, Warncke D. 2007. Plasticulture for Michigan vegetable production. Extension Bulletin E-2980.

[12]

Lamont WJ. 2005. Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477−81

doi: 10.21273/horttech.15.3.0477
[13]

Zhang H, Miles C, Gerdeman B, LaHue DG, DeVetter L. 2021. Plastic mulch use in perennial fruit cropping systems – A review. Scientia Horticulturae 281:109975

doi: 10.1016/j.scienta.2021.109975
[14]

Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, et al. 2020. Degradation rates of plastics in the environment. ACS Sustainable Chemistry & Engineering 8:3511

doi: 10.1021/acssuschemeng.9b06635
[15]

Ghimire S, Miles C. 2016. Dimensions and costs of polyethylene, paper and biodegradable plastic mulch. Department of Horticulture, Washington State University Northwestern Research and Extension Center Mount Vernon, WA.

[16]

Jones G. 2018. Ag film mulch contanimation. Ag Plastic Conference, Orlando, Florida, 2018. Orlando: Ag Plastic Recycling News. https://agplasticconference.com/news/f/ag-film-mulch-contanimation

[17]

Levitan L, Barros A. 2003. Recycling agricultural plastics in New York State. Executive Summary. Cornell Environmental Risk Analysis Program. www.cfe.cornell.edu/erap/C&ER/PlasticsDisposal/AgPlasticsRecycling.

[18]

Madrid B, Wortman S, Hayes DG, DeBruyn JM, Miles C, et al. 2022. End-of-life management options for agricultural mulch films in the United States—a review. Frontiers in Sustainable Food Systems 6:921496

doi: 10.3389/fsufs.2022.921496
[19]

Steinmetz Z, Wollmann C, Schaefer M, Buchmann C, David J, et al. 2016. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation? The Science of the Total Environment 550:690−705

doi: 10.1016/j.scitotenv.2016.01.153
[20]

Maughan T, Drost D. 2016. Use of plastic mulch for vegetable production. Factsheet. Utah State University Extension. https://extension.usu.edu/productionhort/files/Use-of-Plastic-Mulch-for-Vegetable-Production.pdf

[21]

Guo B, Meng J, Wang X, Yin C, Hao W, et al. 2019. Quantification of pesticide residues on plastic mulching films in typical farmlands of the North China. Frontiers of Environmental Science & Engineering 14:2

doi: 10.1007/s11783-019-1181-9
[22]

Brodhagen M, Peyron M, Miles C, Inglis DA. 2015. Biodegradable plastic agricultural mulches and key features of microbial degradation. Applied Microbiology and Biotechnology 99(3):1039−56

doi: 10.1007/s00253-014-6267-5
[23]

Miles C, DeVetter L, Ghimire S, Hayes DG. 2017. Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems. HortScience 52(1):10−15

doi: 10.21273/hortsci11249-16
[24]

Hochmuth GJ, Hochmuth RC, Olson SM. 2018. Polyethylene mulching for early vegetable production in North Florida. https://edis.ifas.ufl.edu/publication/CV213

[25]

Krone P. 2020. Agricultural use of plastic in Monterey County: An assessment of plastic pollution risk and reduction for regional waterways. http://awqa.org/wp-content/toolkits/Other/White%20Paper%20V12.pdf

[26]

Perdue S, Hamer H. 2019. 2017 Census of Agriculture - Specialty Crops. Volume 2. Subject Series, Part 8. United States Department of Agriculture. www.nass.usda.gov/Publications/AgCensus/2017/Online_Resources/Specialty_Crops/SCROPS.pdf

[27]

USDA. 2023. Noncitrus Fruits and Nuts 2022 Summary. United States Department of Agriculture, National Agricultural Statistics Service. https://downloads.usda.library.cornell.edu/usda-esmis/files/zs25x846c/zk51wx21m/k356bk214/ncit0523.pdf (cited 13 Nov 2023)

[28]

Devetter L, Bolda M, Krone P. 2020. Use of Polyethylene (PE) Mulch in Strawberry Production. US: Washington State University. https://s3.wp.wsu.edu/uploads/sites/2181/2021/10/2.-PE-mulch-in-strawberry.pdf

[29]

Goldberger JR, Devetter LW, Dentzman KE. 2019. Polyethylene and Biodegradable Plastic Mulches for Strawberry Production in the United States: Experiences and Opinions of Growers in Three Regions. Horttechnology 29(5):619−28

[30]

CalRecycle. 2021. State of disposal and recycling in California for calendar year 2020. www.calrecycle.ca.gov/Publications

[31]

US Environmental Protection Agency. 2018. Agriculture and Air Quality. www.epa.gov/agriculture/agriculture-and-air-quality#backyardburn

[32]

Velandia M, Delong KL, Wszelaki A, Schexnayder S, Clark C, et al. 2020. Use of Polyethylene and Plastic Biodegradable Mulches among Tennessee Fruit and Vegetable Growers. Horttechnology 30(2):212−18

[33]

The Environmental Research and Education Foundation. 2023. Analysis of MSW Landfill Tipping Fees – 2022. https://erefdn.org/product/analysis-of-msw-landfill-tipping-fees-2022-pdf/

[34]

National Conference of State Legislatures. 2021. State plastic bag legislation. www.ncsl.org/environment-and-natural-resources/state-plastic-bag-legislation

[35]

Hemphill DD. 1993. Agricultural plastics as solid waste: what are the options for disposal? HortTechnology 3:70−73

doi: 10.21273/horttech.3.1.70
[36]

Moore J, Wszelaki A. 2016. Plastic mulch in fruit and vegetable production: Challenges for disposal. Report. FA-2016-02. https://biodegradablemulch.tennessee.edu/wp-content/uploads/sites/214/2020/12/Plastic_Mulch_in_Fruit_and_Vegetable_Production_12_20factsheet.pdf

[37]

Baptista AI, Perovich A. 2019. US municipal solid waste incinerators: An industry in decline. Report. Tishman Environment and Design Center at The New School. https://grist.org/wp-content/uploads/2020/07/1ad71-cr_gaiareportfinal_05.21.pdf

[38]

Baptista AI, Amarnath KK. 2017. Garbage, Power, and Environmental Justice: The Clean Power Plan Rule. Mary Envtl L & Pol'y Rev. 403. https://scholarship.law.wm.edu/wmelpr/vol41/iss2/4

[39]

Washington State Department of Ecology. n.d. Outdoor & residential burning - Washington State Department of Ecology. https://ecology.wa.gov/Air-Climate/Air-quality/Smoke-fire/Outdoor-residential-burning

[40]

Pathak G, Nichter M, Hardon A, Moyer E, Latkar A, et al. 2023. Plastic pollution and the open burning of plastic wastes. Global Environmental Change 80:102648

doi: 10.1016/j.gloenvcha.2023.102648
[41]

Kim R. 2021. To mulch or not to mulch: Problems with plastic mulch and how to address them. Journal of the National Association of Administrative Law Judiciary 42(1):1

[42]

Government Accountability Office. 2022. Biorecycling of Plastics. Science & Tech Spotlight, GAO-23-106261. www.gao.gov/assets/gao-23-106261.pdf

[43]

Brooks B. 2021. Recycled plastics market becoming more liquid and globalized as demand soars. S&P Global Commodity Insights. www.spglobal.com/commodityinsights/en/market-insights/blogs/petrochemicals/031121-recycled-plastics-global-market-commoditization-standards-pricing

[44]

Briassoulis D, Hiskakis M, Babou E. 2013. Technical specifications for mechanical recycling of agricultural plastic waste. Waste Management 33:1516−30

doi: 10.1016/j.wasman.2013.03.004
[45]

Kim RK, Kang M, Kim JP, Kim YH, Lee JS, et al. 1997. Wood-polymer composites with recycled polyethylene films. In Fourth International Conference On Woodfiber-plastic Composites. Madison, WI, USA: Forest Products Society. pp. 275–79

[46]

Day M, Awadalla FT, Lynhiavu A. 1994. Chemical association of lead in auto shredder residue. Environmental Technology 15:585−92

doi: 10.1080/09593339409385464
[47]

Day M, Cooney JD, MacKinnon M. 1995. Degradation of contaminated plastics: a kinetic study. Polymer Degradation and Stability 48:341−49

doi: 10.1016/0141-3910(95)00088-4
[48]

Rahim HU, Akbar WA, Begum N, Uddin M, Qaswar M, et al. 2022. Mulches and microplastic pollution in the agroecosystem. In Mulching in Agroecosystems, eds. Akhtar K, Arif M, Riaz M, Wang H. Singapore: Springer. pp. 315−28. https://doi.org/10.1007/978-981-19-6410-7_18

[49]

Tzankova Dintcheva N, La Mantia FP, Acierno D, Di Maio L, Camino G, et al. 2001. Characterization and reprocessing of greenhouse films. Polymer Degradation and Stability 72:141−46

doi: 10.1016/s0141-3910(01)00008-8
[50]

Wang K. 2012. Die swell of complex polymeric systems. In Viscoelasticity - From Theory to Biological Applications, ed. de Vicente J. InTech. pp. 77–96. https://doi.org/10.5772/50137

[51]

PlasticsEurope. 2015. Plastics: The Facts 2014/2015: An analysis of European plastics production, demand and waste data. https://plasticseurope.org/de/wp-content/uploads/sites/3/2021/11/2014-Plastics-the-facts.pdf

[52]

Hopewell J, Dvorak R, Kosior E. 2009. Plastics recycling: Challenges and opportunities. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1526):2115−26

doi: 10.1098/rstb.2008.0311
[53]

Geyer R, Jambeck JR, Law KL. 2017. Production, use, and fate of all plastics ever made. Science Advances 3(7):e1700782

doi: 10.1126/sciadv.1700782
[54]

de Camargo RV, Saron C. 2020. Mechanical–Chemical Recycling of Low-Density Polyethylene Waste with Polypropylene. Journal of Polymers and the Environment 28(3):794−802

[55]

Lerici LC, Renzini MS, Pierella LB. 2015. Chemical catalyzed recycling of polymers: catalytic conversion of PE, PP and PS into fuels and chemicals over H-Y. Procedia Materials Science 8:297−303

doi: 10.1016/j.mspro.2015.04.076
[56]

Damayanti D, Saputri DR, Marpaung DSS, Yusupandi F, Sanjaya A, et al. 2022. Current prospects for plastic waste treatment. Polymers 14(15):3133

doi: 10.3390/polym14153133
[57]

Serranti S, Bonifazi G. 2019. Techniques for separation of plastic wastes. In Use of Recycled Plastics in Eco-efficient Concrete, eds. Pacheco-Torgal F, Khatib J, Colangelo F, Tuladhar R. UK: Woodhead Publishing. pp. 9–37. www.sciencedirect.com/science/article/pii/B9780081026762000025

[58]

Soto JM, Martín-Lara MA, Blázquez G, Godoy V, Quesada L, et al. 2020. Novel pre-treatment of dirty post-consumer polyethylene film for its mechanical recycling. Process Safety and Environmental Protection 139:315−24

doi: 10.1016/j.psep.2020.04.044
[59]

Andersson T, Stålbom B, Wesslén B. 2004. Degradation of polyethylene during extrusion. II. Degradation of low-density polyethylene, linear low-density polyethylene, and high-density polyethylene in film extrusion. Journal of Applied Polymer Science 92:684−85

doi: 10.1002/app.20183
[60]

Boz Noyan EC, Venkatesh A, Boldizar A. 2022. Washing post-consumer flexible polyethylene packaging waste. Recycling 7(6):90

doi: 10.3390/recycling7060090
[61]

Picuno P, Sica C, Laviano R, Dimitrijević A, Scarascia-Mugnozza G. 2012. Experimental tests and technical characteristics of regenerated films from agricultural plastics. Polymer Degradation and Stability 97:1654−61

doi: 10.1016/j.polymdegradstab.2012.06.024
[62]

Lima AC, Monteiro SN, Satyanarayana KG. 2012. Recycled polyethylene composites reinforced with jute fabric from sackcloth: part I - preparation and preliminary assessment. Journal of Polymers and the Environment 20:245−53

doi: 10.1007/s10924-011-0373-6
[63]

Amin AR. 2001. LDPE/EPDM multilayer films containing recycled LDPE for greenhouse applications. Journal of Polymers and the Environment 9:25−30

doi: 10.1023/A:1016040403779
[64]

Singh AK, Bedi R, Kaith BS. 2020. Mechanical properties of composite materials based on waste plastic – A review. Materials Today: Proceedings 26:1293−301

doi: 10.1016/j.matpr.2020.02.258
[65]

Englund K, Villechevrolle V. 2011. Flexure and water sorption properties of wood thermoplastic composites made with polymer blends. Journal of Applied Polymer Science 120:1034−39

doi: 10.1002/app.33237
[66]

Selke SE, Wichman I. 2004. Wood fiber/polyolefin composites. Composites Part A: Applied Science and Manufacturing 35:321−26

doi: 10.1016/j.compositesa.2003.09.010
[67]

Smith PM, Wolcott MP. 2006. Opportunities for wood/natural fiber-plastic composites in residential and industrial applications. Forest Products Journal 56(3):4−11

[68]

Kazemi-Najafi S, Nikray SJ, Ebrahimi G. 2012. A comparison study on creep behavior of wood–plastic composite, solid wood, and polypropylene. Journal of Composite Materials 46(7):801−8

doi: 10.1177/0021998311410499
[69]

Kazemi M, Faisal Kabir S, Fini EH. 2021. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resources, Conservation and Recycling 174:105776

doi: 10.1016/j.resconrec.2021.1057
[70]

Hama SM, Hilal NN. 2017. Fresh properties of self-compacting concrete with plastic waste as partial replacement of sand. International Journal of Sustainable Built Environment 6(2):299−308

doi: 10.1016/J.IJSBE.2017.01.001
[71]

Khalid FS, Irwan JM, Ibrahim MHW, Othman N, Shahidan S. 2018. Performance of plastic wastes in fiber-reinforced concrete beams. Construction and Building Materials 183:451−64

doi: 10.1016/j.conbuildmat.2018.06.122
[72]

Naderi Kalali E, Lotfian S, Entezar Shabestari M, Khayatzadeh S, et al. 2023. A critical review of the current progress of plastic waste recycling technology in structural materials. Current Opinion in Green and Sustainable Chemistry 40:100763

doi: 10.1016/j.cogsc.2023.100763
[73]

Brasileiro L, Moreno-Navarro F, Tauste-Martínez R, Matos J, Rubio-Gámez M del C. 2019. Reclaimed Polymers as Asphalt Binder Modifiers for More Sustainable Roads: A Review. Sustainability 11(3):646

doi: 10.3390/su11030646
[74]

Casey D, McNally C, Gibney A, Gilchrist MD. 2008. Development of a recycled polymer modified binder for use in stone mastic asphalt. Resources, Conservation and Recycling 52:1167−74

doi: 10.1016/j.resconrec.2008.06.002
[75]

Dalhat MA, Al-Abdul Wahhab HI. 2015. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. International Journal of Pavement Engineering 18(4):349−57

doi: 10.1080/10298436.2015.1088150
[76]

Willis R, Yin F, Moraes R. 2020. Recycled plastics in Asphalt part A: State of the knowledge. www.asphaltinstitute.org/wp-content/uploads/RecycledPlasticsInAsphaltPartA.pdf.

[77]

Silva JdeAAe, Rodrigues JKG, de Carvalho MW, Lucena LCdeFL, Cavalcante EH. 2018. Mechanical performance of asphalt mixtures using polymer-micronized PET-modified binder. Road Materials and Pavement Design 19(4):1001−9

doi: 10.1080/14680629.2017.1283353
[78]

Wu S, Montalvo L. 2021. Repurposing waste plastics into cleaner asphalt pavement materials: a critical literature review. Journal of Cleaner Production 280:124355

doi: 10.1016/J.JCLEPRO.2020.124355
[79]

Yin F, Fortunatus M, Moraes R, Elwardany MD, Tran N, et al. 2021. Performance evaluation of asphalt mixtures modified with recycled polyethylene via the wet process. Transportation Research Record: Journal of the Transportation Research Board 2675(10):491−502

doi: 10.1177/03611981211011650
[80]

Yin F, Moraes R, Fortunatus M, Tran N, Elwardany MD, et al. 2020. Performance evaluation and chemical characterization of asphalt binders and mixtures containing recycled polyethylene. Plastic Industry Association: Washington, DC, USA. www.academia.edu/65456948/Performance_Evaluation_and_Chemical_Characterization_of_Asphalt_Binders_and_Mixtures_Containing_Recycled_Polyethylene?source=swp_share

[81]

Ho S, Church R, Klassen K, Law B, MacLeod D, et al. 2006. Study of recycled polyethylene materials as asphalt modifiers. Canadian Journal of Civil Engineering 33:968−81

doi: 10.1139/l06-044
[82]

Chen S. 2020. An evaluation of waste plastic in asphalt pavement towards a circular economy. Thesis. University of Missouri, Columbia. https://doi.org/10.32469/10355/88941

[83]

Englund K, Li H, Brandt K, Camenzind D, Dossey S, et al. 2021. Plastics recycling market development for Washington State and the Northwest Region. Report. Washington State University, US. https://s3.wp.wsu.edu/uploads/sites/164/2021/07/RDC-Report-7-15-2021-1.pdf

[84]

Paszun D, Spychaj T. 1997. Chemical Recycling of Poly(ethylene terephthalate). Industrial & Engineering Chemistry Research 36(4):1373−83

doi: 10.1021/ie960563c
[85]

Coates GW, Getzler YDYL. 2020. Chemical recycling to monomer for an ideal, circular polymer economy. Nature Reviews Materials 5(7):501−16

doi: 10.1038/s41578-020-0190-4
[86]

Das SK, Eshkalak SK, Chinnappan A, Ghosh R, Jayathilaka WADM, et al. 2021. Plastic recycling of polyethylene terephthalate (PET) and polyhydroxybutyrate (PHB)—a comprehensive review. Materials Circular Economy 3:9

doi: 10.1007/s42824-021-00025-3
[87]

Khalid MY, Arif ZU, Ahmed W, Arshad H. 2022. Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustainable Materials and Technologies 31:e00382

doi: 10.1016/j.susmat.2021.e00382
[88]

Achilias DS, Roupakias C, Megalokonomos P, Lappas AA, Antonakou EV. 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials 149:536−42

doi: 10.1016/j.jhazmat.2007.06.076
[89]

Mishra R, Kumar A, Singh E, Kumar S. 2023. Recent Research Advancements in Catalytic Pyrolysis of Plastic Waste. ACS Sustainable Chemistry & Engineering 11(6):2033−49

doi: 10.1021/acssuschemeng.2c05759
[90]

Wang LC, Lee WJ, Tsai PJ, Lee WS, Chang-Chien GP. 2003. Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere 50:1123−29

doi: 10.1016/s0045-6535(02)00702-6
[91]

Kumar S, Singh E, Mishra R, Kumar A, Caucci S. 2021. Utilization of Plastic Wastes for Sustainable Environmental Management: A Review. ChemSusChem 14(19):3985−4006

doi: 10.1002/cssc.202101631
[92]

Dai L, Zhou N, Lv Y, Cheng Y, Wang Y, Liu Y, et al. 2022. Pyrolysis technology for plastic waste recycling: A state-of-the-art review. Prog Energy Combust Sci 93:101021

doi: 10.1016/j.pecs.2022.101021
[93]

Park SS, Seo DK, Lee SH, Yu TU, Hwang J. 2012. Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor. Journal of Analytical and Applied Pyrolysis 97:29−38

doi: 10.1016/j.jaap.2012.06.009
[94]

Susastriawan AAP, Purnomo, Sandria A. 2020. Experimental study the influence of zeolite size on low-temperature pyrolysis of low-density polyethylene plastic waste. Thermal Science and Engineering Progress 17:100497

doi: 10.1016/j.tsep.2020.100497
[95]

Zhang Y, Duan D, Lei H, Villota E, Ruan R. 2019. Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons. Applied Energy 251:113337

doi: 10.1016/j.apenergy.2019.113337
[96]

Lee N, Joo J, Lin KYA, Lee J. 2021. Waste-to-fuels: pyrolysis of low-density polyethylene waste in the presence of H-ZSM-11. Polymers 13(8):1198

doi: 10.3390/polym13081198
[97]

Singh E, Kumar A, Khapre A, Saikia P, Shukla SK, Kumar S, et al. 2020. Efficient removal of arsenic using plastic waste char: prevailing mechanism and sorption performance. Journal of Water Process Engineering 33:101095

doi: 10.1016/j.jwpe.2019.101095
[98]

Manžuch Z, Akelytė R, Camboni M, Carlander D. 2021. recycling of polymeric materials from waste in the circular eco. Final Report. ECHA/2020/571.

[99]

Soong YHV, Sobkowicz MJ, Xie D. 2022. Recent advances in biological recycling of polyethylene terephthalate (PET) plastic wastes. Bioengineering 9:98

doi: 10.3390/bioengineering9030098
[100]

United States FDA. 2021. Guidance for industry: Use of Recycled plastics in food packaging (chemistry considerations). US Department of Health and Human Services Food and Drug Administration Center for Food Safety and Applied Nutrition. www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-use-recycled-plastics-food-packaging-chemistry-considerations

[101]

Briassoulis D, Hiskakis M, Babou E, Antiohos SK, Papadi C. 2012. Experimental investigation of the quality characteristics of agricultural plastic wastes regarding their recycling and energy recovery potential. Waste Management 32:1075−90

doi: 10.1016/j.wasman.2012.01.018
[102]

Nark R, Xiao K. 2016. A film processor's guide to understanding materials & equipment.Plastic Technology, Gardner Business Media Inc. www.ptonline.com/articles/a-film-processors-guide-to-understanding-materials-equipment

[103]

Mariansky G. 2006. Plastics - Solution or pollution. Cal Engineering & Geology (CalEng). pp. 12–15.

[104]

Briassoulis D, Hiskakis M, Briassoulis C. 2012. Design of a common European agricultural plastic packaging waste management system in Europe. C-0296. Proceedings of the CIGR-AgEng, Valencia, Spain, July 8–12, 2012. Belgium: International Commission of Agricultural and Biosystems Engineering (CIGR-AgEng).

[105]

Patel M, Von Thienen N, Jochem E, Worrell E. 2000. Recycling of plastics in Germany. Resources, Conservation and Recycling 29:65−90

doi: 10.1016/S0921-3449(99)00058-0
[106]

Gendell A, Lahme V. 2022. Feedstock quality guidelines for pyrolysis of plastic waste. Report for the Alliance to End Plastic Waste. www.endplasticwaste.org

[107]

Schyns ZOG, Shaver MP. 2021. Mechanical recycling of packaging plastics: a review. Macromolecular Rapid Communications 42(3):2000415

doi: 10.1002/marc.202000415
[108]

Jeswani H, Krüger C, Russ M, Horlacher M, Antony F, et al. 2021. Life cycle environmental impacts of chemical recycling via pyrolysis of mixed plastic waste in comparison with mechanical recycling and energy recovery. Science of the Total Environment 769:144483

doi: 10.1016/j.scitotenv.2020.144483