[1]

Koyama T. 2014. The roles of ethylene and transcription factors in the regulation of onset of leaf senescence. Frontiers in Plant Science 5:650

doi: 10.3389/fpls.2014.00650
[2]

Zhu K, Tao H, Xu S, Li K, Zafar S, et al. 2019. Overexpression of salt-induced protein (salT) delays leaf senescence in rice. Genetics and Molecular Biology 42:80−86

doi: 10.1590/1678-4685-gmb-2017-0365
[3]

Jan S, Abbas N, Ashraf M, Ahmad P. 2019. Roles of potential plant hormones and transcription factors in controlling leaf senescence and drought tolerance. Protoplasma 256:313−29

doi: 10.1007/s00709-018-1310-5
[4]

Woo HR, Kim HJ, Lim PO, Nam HG. 2019. Leaf senescence: systems and dynamics aspects. Annual Review of Plant Biology 70:347−76

doi: 10.1146/annurev-arplant-050718-095859
[5]

Tamary E, Nevo R, Naveh L, Levin-Zaidman S, Kiss V, et al. 2019. Chlorophyll catabolism precedes changes in chloroplast structure and proteome during leaf senescence. Plant Direct 3:e00127

doi: 10.1002/pld3.127
[6]

Buet A, Costa ML, Martínez DE, Guiamet JJ. 2019. Chloroplast protein degradation in senescing leaves: proteases and lytic compartments. Frontiers in Plant Science 10:747

doi: 10.3389/fpls.2019.00747
[7]

Chrobok D, Law SR, Brouwer B, Lindén P, Ziolkowska A, et al. 2016. Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiology 172:2132−53

doi: 10.1104/pp.16.01463
[8]

Ostrowska-Mazurek A, Kasprzak P, Kubala S, Zaborowska M, Sobieszczuk-Nowicka E. 2020. Epigenetic landmarks of leaf senescence and crop improvement. International Journal of Molecular Sciences 21:5125

doi: 10.3390/ijms21145125
[9]

Wang X, Gao J, Gao S, Song Y, Yang Z, et al. 2019. The H3K27me3 demethylase REF6 promotes leaf senescence through directly activating major senescence regulatory and functional genes in Arabidopsis. PLoS Genetics 15:e1008068

doi: 10.1371/journal.pgen.1008068
[10]

Chen L, Xiang S, Chen Y, Li D, Yu D. 2017. Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Molecular Plant 10:1174−89

doi: 10.1016/j.molp.2017.07.008
[11]

Sakuraba Y, Kim D, Han SH, Kim SH, Piao W, et al. 2020. Multilayered regulation of membrane-bound ONAC054 is essential for abscisic acid-induced leaf senescence in rice. The Plant Cell 32:630−49

doi: 10.1105/tpc.19.00569
[12]

An J, Zhang X, Bi S, You C, Wang X, et al. 2019. MdbHLH93, an apple activator regulating leaf senescence, is regulated by ABA and MdBT2 in antagonistic ways. New Phytologist 222:735−51

doi: 10.1111/nph.15628
[13]

Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell & Environment 44:645−64

doi: 10.1111/pce.13948
[14]

Li Z, Zhao T, Liu J, Li H, Liu B. 2023. Shade-induced leaf senescence in plants. Plants 12:1550

doi: 10.3390/plants12071550
[15]

Fan J, Lou Y, Shi H, Chen L, Cao L. 2019. Transcriptomic analysis of dark-induced senescence in bermudagrass (Cynodon dactylon). Plants 8:614

doi: 10.3390/plants8120614
[16]

Emberson LD, Pleijel H, Ainsworth EA, van den Berg M, Ren W, et al. 2018. Ozone effects on crops and consideration in crop models. European Journal of Agronomy 100:19−34

doi: 10.1016/j.eja.2018.06.002
[17]

Dawnay L, Mills G. 2009. Relative effects of elevated background ozone concentrations and peak episodes on senescence and above-ground growth in four populations of Anthoxanthum odoratum L. Environmental Pollution 157:503−10

doi: 10.1016/j.envpol.2008.09.003
[18]

Nguyen DH, Lin C, Vu CT, Cheruiyot NK, Nguyen MK, et al. 2022. Tropospheric ozone and NOx: a review of worldwide variation and meteorological influences. Environmental Technology & Innovation 28:102809

doi: 10.1016/j.eti.2022.102809
[19]

Sanz J, Bermejo V, Muntifering R, González-Fernández I, Gimeno BS, et al. 2011. Plant phenology, growth and nutritive quality of Briza maxima: responses induced by enhanced ozone atmospheric levels and nitrogen enrichment. Environmental Pollution 159:423−30

doi: 10.1016/j.envpol.2010.10.026
[20]

Renaud JP, Allard G, Mauffette Y. 1997. Effects of ozone on yield, growth, and root starch concentrations of two alfalfa (Medicago sativ A L.) cultivars. Environmental Pollution 95:273−81

doi: 10.1016/S0269-7491(97)00001-8
[21]

Sun Z, Wang X, Yamamoto H, Tani H, Nie T. 2020. The effects of spatiotemporal patterns of atmospheric CO2 concentration on terrestrial gross primary productivity estimation. Climatic Change 163:913−30

doi: 10.1007/s10584-020-02903-2
[22]

Roy S, Mathur P. 2021. Delineating the mechanisms of elevated CO2 mediated growth, stress tolerance and phytohormonal regulation in plants. Plant Cell Reports 40:1345−65

doi: 10.1007/s00299-021-02738-w
[23]

Blumenthal DM, Mueller KE, Kray JA, LeCain DR, Pendall E, et al. 2018. Warming and elevated CO2 interact to alter seasonality and reduce variability of soil water in a semiarid grassland. Ecosystems 21:1533−44

doi: 10.1007/s10021-018-0237-1
[24]

Reyes-Fox M, Steltzer H, Trlica MJ, McMaster GS, Andales AA, et al. 2014. Elevated CO2 further lengthens growing season under warming conditions. Nature 510:259−62

doi: 10.1038/nature13207
[25]

Abdalla Filho AL, Costa Junior GT, Lima PMT, Soltangheisi A, Abdalla AL, et al. 2019. Fiber fractions, multielemental and isotopic composition of a tropical C4 grass grown under elevated atmospheric carbon dioxide. PeerJ 7:e5932

doi: 10.7717/peerj.5932
[26]

Jagadish SVK, Way DA, Sharkey TD. 2021. Plant heat stress: concepts directing future research. Plant, Cell & Environment 44:1992−2005

doi: 10.1111/pce.14050
[27]

Ge ZM, Kellomäki S, Zhou X, Peltola H, Wang KY, et al. 2012. Seasonal physiological responses and biomass growth in a bioenergy crop (Phalaris arundinacea L.) under elevated temperature and CO2, subjected to different water regimes in boreal conditions. BioEnergy Research 5:637−48

doi: 10.1007/s12155-011-9170-2
[28]

Ge ZM, Zhou X, Kellomaki S, Biasi C, Wang KY, et al. 2012. Carbon assimilation and allocation (13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected to elevated temperature and CO2 through a growing season. Environmental and Experimental Botany 75:150−58

doi: 10.1016/j.envexpbot.2011.09.008
[29]

Yang Z, Miao Y, Yu J, Liu J, Huang B. 2014. Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae 170:75−81

doi: 10.1016/j.scienta.2014.02.005
[30]

Xu Q, Huang B. 2004. Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Science 44:553−60

doi: 10.2135/cropsci2004.5530
[31]

Faiz MA, Zhang Y, Zhang X, Ma N, Aryal SK, et al. 2022. A composite drought index developed for detecting large-scale drought characteristics. Journal of Hydrology 605:127308

doi: 10.1016/j.jhydrol.2021.127308
[32]

Guenni O, Romero E, Guédez Y, Macías MP, Infante D. 2016. Survival strategies of Centrosema molle and C. macrocarpum in response to drought. Tropical Grasslands-Forrajes Tropicales 5:1

[33]

Ahkami AH, Wang W, Wietsma TW, Winkler T, Lange I, et al. 2019. Metabolic shifts associated with drought-induced senescence in Brachypodium. Plant Science 289:110278

doi: 10.1016/j.plantsci.2019.110278
[34]

Jardine EC, Thomas GH, Osborne CP. 2021. Traits explain sorting of C4 grasses along a global precipitation gradient. Ecology and Evolution 11:2669−80

doi: 10.1002/ece3.7223
[35]

Bates PD. 2022. Flood inundation prediction. Annual Review of Fluid Mechanics 54:287−315

doi: 10.1146/annurev-fluid-030121-113138
[36]

Striker GG, Ploschuk RA. 2018. Recovery from short-term complete submergence in temperate pasture grasses. Crop and Pasture Science 69:745−53

doi: 10.1071/CP18055
[37]

Zhang K, Chang L, Li G, Li Y. 2023. Advances and future research in ecological stoichiometry under saline-alkali stress. Environmental Science and Pollution Research 30:5475−86

doi: 10.1007/s11356-022-24293-x
[38]

Dong S, Pang W, Liu Z, Li H, Zhang K, et al. 2022. Transcriptome analysis of leaf senescence regulation under alkaline stress in Medicago truncatula. Frontiers in Plant Science 13:881456

doi: 10.3389/fpls.2022.881456
[39]

Dong S, Sang L, Xie H, Chai M, Wang ZY. 2021. Comparative transcriptome analysis of salt stress-induced leaf senescence in Medicago truncatula. Frontiers in Plant Science 12:666660

doi: 10.3389/fpls.2021.666660
[40]

He H, Li Y, He L. 2018. The central role of hydrogen sulfide in plant responses to toxic metal stress. Ecotoxicology and Environmental Safety 157:403−08

doi: 10.1016/j.ecoenv.2018.03.060
[41]

Andrejić G, Šinžar-Sekulić J, Prica M, Dželetović Ž, Rakić T. 2019. Phytoremediation potential and physiological response of Miscanthus × giganteus cultivated on fertilized and non-fertilized flotation tailings. Environmental Science and Pollution Research 26:34658−69

doi: 10.1007/s11356-019-06543-7
[42]

Harman G, Khadka R, Doni F, Uphoff N. 2020. Benefits to plant health and productivity from enhancing plant microbial symbionts. Frontiers in Plant Science 11:610065

doi: 10.3389/fpls.2020.610065
[43]

Fan Q, Creamer R, Li Y. 2018. Time-course metabolic profiling in alfalfa leaves under Phoma medicaginis infection. PLoS One 13:e0206641

doi: 10.1371/journal.pone.0206641
[44]

Zhang H, Li X, White JF, Wei X, He Y, et al. 2022. Epichloë endophyte improves ergot disease resistance of host (Achnatherum inebrians) by regulating leaf senescence and photosynthetic capacity. Journal of Plant Growth Regulation 41:808−17

doi: 10.1007/s00344-021-10340-3
[45]

Demirkol G. 2021. PopW enhances drought stress tolerance of alfalfa via activating antioxidative enzymes, endogenous hormones, drought related genes and inhibiting senescence genes. Plant Physiology and Biochemistry 166:540−48

doi: 10.1016/j.plaphy.2021.06.036
[46]

Lü X, Reed SC, Yu Q, Han X. 2016. Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil 398:111−20

doi: 10.1007/s11104-015-2642-y
[47]

Liu D, Song C. 2008. Responses of marsh wetland plant Calamagrostis angustifolia to exogenous nitrogen input. Ying Yong Sheng Tai Xue Bao 19:2599−604

[48]

Farias LD, Zanine AD, Ferreira DD, Ribeiro MD, de Souza AL, et al. 2019. Effects of nitrogen fertilization and seasons on the morphogenetic and structural characteristics of Piata (Brachiaria brizantha) grass. Revista De La Facultad De Ciencias Agrarias 51:42−54

[49]

Magalhães JA, Socorro de Souza Carneiro M, Andrade AC, de Andrade AP, Bakke OA, et al. 2013. Morphogenetic and structural characteristics of andropogon grass under irrigation and fertilization. Semina-Ciencias Agrarias 34:2427−35

doi: 10.5433/1679-0359.2013v34n5p2427
[50]

Maranhao SR, Pompeu RCFF, de Araujo RA, Lopes MN, Cândido MJD, et al. 2021. Morphophysiology of tropical grasses under different water supply in two growing seasons: II. BRS Massai and BRS Tamani grasses. Semina: Ciências Agrárias 42:301−18

doi: 10.5433/1679-0359.2021v42n1p301
[51]

Zhao C, Yue Y, Wu J, Scullion J, Guo Q, et al. 2023. Panicle removal delays plant senescence and enhances vegetative growth improving biomass production in switchgrass. Biomass and Bioenergy 174:106809

doi: 10.1016/j.biombioe.2023.106809
[52]

De Michele R, Formentin E, Todesco M, Toppo S, Carimi F, et al. 2009. Transcriptome analysis of Medicago truncatula leaf senescence: similarities and differences in metabolic and transcriptional regulations as compared with Arabidopsis, nodule senescence and nitric oxide signalling. New Phytologist 181:563−75

doi: 10.1111/j.1469-8137.2008.02684.x
[53]

Mahmood K, Torres-Jerez I, Krom N, Liu W, Udvardi MK. 2022. Transcriptional programs and regulators underlying age-dependent and dark-induced senescence in Medicago truncatula. Cells 11:1570

doi: 10.3390/cells11091570
[54]

Zhou C, Han L, Pislariu C, Nakashima J, Fu C, et al. 2011. From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement. Plant Physiology 157:1483−96

doi: 10.1104/pp.111.185140
[55]

Macovei A, Balestrazzi A, Confalonieri M, Carbonera D. 2010. The tyrosyl-DNA phosphodiesterase gene family in Medicago truncatula Gaertn.: bioinformatic investigation and expression profiles in response to copper- and PEG-mediated stress. Planta 232:393−407

doi: 10.1007/s00425-010-1179-9
[56]

Donà M, Confalonieri M, Minio A, Biggiogera M, Buttafava A, et al. 2013. RNA-Seq analysis discloses early senescence and nucleolar dysfunction triggered by Tdp1α depletion in Medicago truncatula. Journal of Experimental Botany 64:1941−51

doi: 10.1093/jxb/ert063
[57]

Yuan J, Sun X, Guo T, Chao Y, Han L. 2020. Global transcriptome analysis of alfalfa reveals six key biological processes of senescent leaves. PeerJ 8:e8426

doi: 10.7717/peerj.8426
[58]

Calderini O, Bovone T, Scotti C, Pupilli F, Piano E, et al. 2007. Delay of leaf senescence in Medicago sativa transformed with the ipt gene controlled by the senescence-specific promoter SAG12. Plant Cell Reports 26:611−15

doi: 10.1007/s00299-006-0262-y
[59]

Jiang J, Jia H, Feng G, Wang Z, Li J, et al. 2016. Overexpression of Medicago sativa TMT elevates the α-tocopherol content in Arabidopsis seeds, alfalfa leaves, and delays dark-induced leaf senescence. Plant Science 249:93−104

doi: 10.1016/j.plantsci.2016.05.004
[60]

Feyissa BA, Amyot L, Nasrollahi V, Papadopoulos Y, Kohalmi SE, et al. 2021. Involvement of the miR156/SPL module in flooding response in Medicago sativa. Scientific Reports 11:3243

doi: 10.1038/s41598-021-82450-7
[61]

Hanly A, Karagiannis J, Lu QSM, Tian L, Hannoufa A. 2020. Characterization of the role of SPL9 in drought stress tolerance in Medicago sativa. nternational Journal of Molecular Sciences 21:6003

doi: 10.3390/ijms21176003
[62]

Li S, Xie H, Zhou L, Dong D, Liu Y, et al. 2022. Overexpression of MsSAG113 gene promotes leaf senescence in alfalfa via participating in the hormone regulatory network. Frontiers in Plant Science 13:1085497

doi: 10.3389/fpls.2022.1085497
[63]

Ma X, Zhang J, Huang B. 2016. Cytokinin-mitigation of salt-induced leaf senescence in perennial ryegrass involving the activation of antioxidant systems and ionic balance. Environmental and Experimental Botany 125:1−11

doi: 10.1016/j.envexpbot.2016.01.002
[64]

Zhang J, Xing J, Lu Q, Yu G, Xu B, et al. 2019. Transcriptional regulation of chlorophyll-catabolic genes associated with exogenous chemical effects and genotypic variations in heat-induced leaf senescence for perennial ryegrass. Environmental and Experimental Botany 167:103858

doi: 10.1016/j.envexpbot.2019.103858
[65]

Zhang J, Li H, Jiang Y, Li H, Zhang Z, et al. 2020. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biology 20:520

doi: 10.1186/s12870-020-02695-8
[66]

Gan L, Han L, Yin S, Jiang Y. 2020. Chlorophyll metabolism and gene expression in response to submergence stress and subsequent recovery in perennial ryegrass accessions differing in growth habits. Journal of Plant Physiology 251:153195

doi: 10.1016/j.jplph.2020.153195
[67]

Zhang J, Li H, Xu B, Li J, Huang B. 2016. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.). Frontiers in Plant Science 7:1500

doi: 10.3389/fpls.2016.01500
[68]

Zhang J, Shi Y, Zhang X, Du H, Xu B, et al. 2017. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany 138:36−45

doi: 10.1016/j.envexpbot.2017.02.012
[69]

Hu Q, Ding F, Li M, Zhang X, Zhang S, et al. 2021. Strigolactone and ethylene inhibitor suppressing dark-induced leaf senescence in perennial ryegrass involving transcriptional downregulation of chlorophyll degradation. Journal of the American Society for Horticultural Science 146:79−86

doi: 10.21273/JASHS04933-20
[70]

Xu B, Yu G, Li H, Xie Z, Wen W, et al. 2019. Knockdown of STAYGREEN in perennial ryegrass (Lolium perenne L.) leads to transcriptomic alterations related to suppressed leaf senescence and improved forage quality. Plant and Cell Physiology 60:202−12

doi: 10.1093/pcp/pcy203
[71]

Zhang J, Li H, Huang X, Xing J, Yao J, et al. 2022. STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. Plant, Cell & Environment 45:1412−27

doi: 10.1111/pce.14296
[72]

Xu B, Li H, Li Y, Yu G, Zhang J, et al. 2018. Characterization and transcriptional regulation of chlorophyll b reductase gene NON-YELLOW COLORING 1 associated with leaf senescence in perennial ryegrass (Lolium perenne L.). Environmental and Experimental Botany 149:43−50

doi: 10.1016/j.envexpbot.2018.01.017
[73]

Lei S, Yu G, Rossi S, Yu J, Huang B. 2021. LpNOL-knockdown suppression of heat-induced leaf senescence in perennial ryegrass involving regulation of amino acid and organic acid metabolism. Physiologia Plantarum 173:1979−91

doi: 10.1111/ppl.13541
[74]

Yu G, Xie Z, Zhang J, Lei S, Lin W, et al. 2021. NOL-mediated functional stay-green traits in perennial ryegrass (Lolium perenne L.) involving multifaceted molecular factors and metabolic pathways regulating leaf senescence. The Plant Journal 106:1219−32

doi: 10.1111/tpj.15204
[75]

Yu G, Xie Z, Chen W, Xu B, Huang B. 2022. Knock down of NON-YELLOW COLOURING 1-like gene or chlorophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf senescence in perennial ryegrass. Journal of Experimental Botany 73:429−44

doi: 10.1093/jxb/erab426
[76]

Zhang J, Yu G, Wen W, Ma X, Xu B, et al. 2016. Functional characterization and hormonal regulation of the PHEOPHYTINASE gene LpPPH controlling leaf senescence in perennial ryegrass. Journal of Experimental Botany 67:935−45

doi: 10.1093/jxb/erv509
[77]

Yang J, Worley E, Ma Q, Li J, Torres-Jerez I, et al. 2016. Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum. New Phytologist 211:75−89

doi: 10.1111/nph.13898
[78]

Paudel B, Das A, Tran M, Boe A, Palmer NA, et al. 2016. Proteomic responses of switchgrass and prairie cordgrass to senescence. Frontiers in Plant Science 7:293

doi: 10.3389/fpls.2016.00293
[79]

Palmer NA, Saathoff AJ, Waters BM, Donze T, Heng-Moss TM, et al. 2013. Global changes in mineral transporters in tetraploid switchgrasses (Panicum virgatum L.). Frontiers in Plant Science 4:549

doi: 10.3389/fpls.2013.00549
[80]

Palmer NA, Donze-Reiner T, Horvath D, Heng-Moss T, Waters B, et al. 2015. Switchgrass (Panicum virgatum L) flag leaf transcriptomes reveal molecular signatures of leaf development, senescence, and mineral dynamics. Functional & Integrative Genomics 15:1−16

doi: 10.1007/s10142-014-0393-0
[81]

Yang J, Worley E, Torres-Jerez I, Miller R, Wang M, et al. 2015. PvNAC1 and PvNAC2 are associated with leaf senescence and nitrogen use efficiency in switchgrass. BioEnergy Research 8:868−80

doi: 10.1007/s12155-014-9566-x
[82]

Rinerson CI, Scully ED, Palmer NA, Donze-Reiner T, Rabara RC, et al. 2015. The WRKY transcription factor family and senescence in switchgrass. BMC Genomics 16:912

doi: 10.1186/s12864-015-2057-4
[83]

Xie Z, Yu G, Lei S, Wang H, Xu B. 2022. STRONG STAYGREEN inhibits DNA binding of PvNAP transcription factors during leaf senescence in switchgrass. Plant Physiology 190:2045−58

doi: 10.1093/plphys/kiac397
[84]

Liu X, Huang B. 2002. Cytokinin effects on creeping bentgrass response to heat stress: II. leaf senescence and antioxidant metabolism. Crop Science 42:466−72

doi: 10.2135/cropsci2002.4660
[85]

He Y, Liu X, Huang B. 2005. Changes in protein content, protease activity, and amino acid content associated with heat injury in creeping bentgrass. Journal of the American Society for Horticultural Science 130:842−47

doi: 10.21273/JASHS.130.6.842
[86]

Xu Y, Huang B. 2007. Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. Journal of the American Society for Horticultural Science 132:185−92

doi: 10.21273/JASHS.132.2.185
[87]

Veerasamy M, He Y, Huang B. 2007. Leaf senescence and protein metabolism in creeping bentgrass exposed to heat stress and treated with cytokinins. Journal of the American Society for Horticultural Science 132:467−72

doi: 10.21273/JASHS.132.4.467
[88]

Xu Y, Huang B. 2009. Effects of foliar-applied ethylene inhibitor and synthetic cytokinin on creeping bentgrass to enhance heat tolerance. Crop Science 49:1876−84

doi: 10.2135/cropsci2008.07.0441
[89]

Jespersen D, Huang B. 2015. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor. Proteomics 15:798−812

doi: 10.1002/pmic.201400393
[90]

Xing J, Xu Y, Tian J, Gianfagna T, Huang B. 2009. Suppression of shade- or heat-induced leaf senescence in creeping bentgrass through transformation with the ipt gene for cytokinin synthesis. Journal of the American Society for Horticultural Science 134:602−09

doi: 10.21273/JASHS.134.6.602
[91]

Merewitz E, Gianfagna T, Huang B. 2010. Effects of SAG12-ipt and HSP18.2-ipt expression on cytokinin production, root growth, and leaf senescence in creeping bentgrass exposed to drought stress. Journal of the American Society for Horticultural Science 135:230−39

doi: 10.21273/JASHS.135.3.230
[92]

Xu Y, Gianfagna T, Huang B. 2010. Proteomic changes associated with expression of a gene (ipt) controlling cytokinin synthesis for improving heat tolerance in a perennial grass species. Journal of Experimental Botany 61:3273−89

doi: 10.1093/jxb/erq149
[93]

Merewitz EB, Du H, Yu W, Liu Y, Gianfagna T, et al. 2011. Elevated cytokinin content in ipt transgenic creeping bentgrass promotes drought tolerance through regulating metabolite accumulation. Journal of Experimental Botany 63:1315−28

doi: 10.1093/jxb/err372
[94]

Merewitz EB, Gianfagna T, Huang B. 2011. Protein accumulation in leaves and roots associated with improved drought tolerance in creeping bentgrass expressing an ipt gene for cytokinin synthesis. Journal of Experimental Botany 62:5311−33

doi: 10.1093/jxb/err166
[95]

Merewitz EB, Gianfagna T, Huang B. 2011. Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. Journal of Experimental Botany 62:383−95

doi: 10.1093/jxb/erq285
[96]

Merewitz E, Xu Y, Huang B. 2016. Differentially expressed genes associated with improved drought tolerance in creeping bentgrass overexpressing a gene for cytokinin biosynthesis. PLoS One 11:e0166676

doi: 10.1371/journal.pone.0166676
[97]

Jiang Z, Xu C, Huang B. 2011. Enzymatic metabolism of nitrogen in leaves and roots of creeping bentgrass under nitrogen deficiency conditions. Journal of the American Society for Horticultural Science 136:320−28

doi: 10.21273/JASHS.136.5.320
[98]

Xu C, Jiang Z, Huang B. 2011. Nitrogen deficiency-induced protein changes in immature and mature leaves of creeping bentgrass. Journal of the American Society for Horticultural Science 136:399−407

doi: 10.21273/JASHS.136.6.399
[99]

Zhang Y, Liang C, Xu Y, Gianfagna T, Huang B. 2010. Effects of ipt gene expression on leaf senescence induced by nitrogen or phosphorus deficiency in creeping bentgrass. Journal of the American Society for Horticultural Science 135:108−15

doi: 10.21273/JASHS.135.2.108
[100]

Jespersen D, Xu C, Huang B. 2015. Membrane proteins associated with heat-induced leaf senescence in a cool-season grass species. Crop Science 55:837−50

doi: 10.2135/cropsci2014.04.0335
[101]

Jespersen D, Zhang J, Huang B. 2016. Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Science 249:1−12

doi: 10.1016/j.plantsci.2016.04.016
[102]

Hwang OJ, Han Y, Paek NC, Kim JI. 2014. Antisense expression of a staygreen gene (SGR) delays leaf senescence in creeping bentgrass. Rapid Communication in Photoscience 3:28−31

doi: 10.5857/RCP.2014.3.2.28
[103]

Chao Y, Xie L, Yuan J, Guo T, Li Y, et al. 2018. Transcriptome analysis of leaf senescence in red clover (Trifolium pratense L.). Physiology and Molecular Biology of Plants 24:753−65

doi: 10.1007/s12298-018-0562-z
[104]

Qian Y, Cao L, Zhang Q, Amee M, Chen K, et al. 2020. SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue. BMC Plant Biology 20:366

doi: 10.1186/s12870-020-02572-4
[105]

Wang L, Doan PPT, Chuong NN, Lee HY, Kim JH, et al. 2023. Comprehensive transcriptomic analysis of age-, dark-, and salt-induced senescence reveals underlying mechanisms and key regulators of leaf senescence in Zoysia japonica. Frontiers in Plant Science 14:1170808

doi: 10.3389/fpls.2023.1170808
[106]

Teng K, Yue Y, Zhang H, Li H, Xu L, et al. 2021. Functional characterization of the pheophytinase gene, ZjPPH, from Zoysia japonica in regulating chlorophyll degradation and photosynthesis. Frontiers in Plant Science 12:786570

doi: 10.3389/fpls.2021.786570
[107]

Guan J, Teng K, Yue Y, Guo Y, Liu L, et al. 2022. Zoysia japonica chlorophyll b reductase gene NOL participates in chlorophyll degradation and photosynthesis. Frontiers in Plant Science 13:906018

doi: 10.3389/fpls.2022.906018
[108]

Dong D, Yang Z, Ma Y, Li S, Wang M, et al. 2022. Expression of a chlorophyll b reductase gene from Zoysia japonica causes changes in leaf color and chlorophyll morphology in Agrostis stolonifera. International Journal of Molecular Sciences 23:6032

doi: 10.3390/ijms23116032
[109]

Teng K, Chang Z, Li X, Sun X, Liang X, et al. 2016. Functional and RNA-sequencing analysis revealed expression of a novel stay-green gene from Zoysia japonica (ZjSGR) caused chlorophyll degradation and accelerated senescence in Arabidopsis. Frontiers in Plant Science 7:1894

doi: 10.3389/fpls.2016.01894
[110]

Teng K, Tan P, Guan J, Dong D, Liu L, et al. 2021. Functional characterization of the chlorophyll b reductase gene NYC1 associated with chlorophyll degradation and photosynthesis in Zoysia japonica. Environmental and Experimental Botany 191:104607

doi: 10.1016/j.envexpbot.2021.104607
[111]

Rossi S, Huang B. 2023. Heat-induced leaf senescence in creeping bentgrass suppressed by aminoethoxyvinylglycine involving regulation of chlorophyll metabolism. Journal of the American Society for Horticultural Science 148:126−33

doi: 10.21273/JASHS05297-23
[112]

Rossi S, Huang B. 2024. Protease inhibitors suppressed leaf senescence in creeping bentgrass exposed to heat stress in association with inhibition of protein degradation into free amino acids. Plant Growth Regulation 102:65−75

doi: 10.1007/s10725-023-00977-3
[113]

Rossi S, Chapman C, Yuan B, Huang B. 2021. Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Research 1:4

doi: 10.48130/GR-2021-0004
[114]

Rossi S, Huang B. 2021. Sitosterol-mediated antioxidant regulation to enhance heat tolerance in creeping bentgrass. Journal of the American Society for Horticultural Science 147:18−24

doi: 10.21273/JASHS05107-21
[115]

Huang C, Tian Y, Zhang B, Hassan MJ, Li Z, et al. 2021. Chitosan (CTS) alleviates heat-induced leaf senescence in creeping bentgrass by regulating chlorophyll metabolism, antioxidant defense, and the heat shock pathway. Molecules 26:5337

doi: 10.3390/molecules26175337
[116]

Liang L, Cao Y, Wang D, Peng Y, Zhang Y, et al. 2021. Spermine alleviates heat-induced senescence in creeping bentgrass by regulating water and oxidative balance, photosynthesis, and heat shock proteins. Biologia Plantarum 65:184−92

doi: 10.32615/bp.2021.008
[117]

Xu Y, Huang B. 2010. Responses of creeping bentgrass to trinexapac-ethyl and biostimulants under summer stress. HortScience 45:125−31

doi: 10.21273/HORTSCI.45.1.125
[118]

Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104116

doi: 10.1016/j.envexpbot.2020.104116
[119]

Li Z, Huang T, Tang M, Cheng B, Peng Y, et al. 2019. iTRAQ-based proteomics reveals key role of γ-aminobutyric acid (GABA) in regulating drought tolerance in perennial creeping bentgrass (Agrostis stolonifera). Plant Physiology and Biochemistry 145:216−26

doi: 10.1016/j.plaphy.2019.10.018
[120]

Ma X, Zhang J, Burgess P, Rossi S, Huang B. 2018. Interactive effects of melatonin and cytokinin on alleviating drought-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 145:1−11

doi: 10.1016/j.envexpbot.2017.10.010