[1]

Branca F, Chiarenza GL, Lucia R, Argento S. 2013. Morphological characterization of The ECPGR wild Brassica species collection. Acta Horticulturae 1005:157−63

doi: 10.17660/ActaHortic.2013.1005.15
[2]

Bennett RN, Rosa EAS, Mellon FA, Kroon PA. 2006. Ontogenic profiling of glucosinolates, flavonoids, and other secondary metabolites in Eruca sativa (salad rocket), Diplotaxis erucoides (wall rocket), Diplotaxis tenuifolia (wild rocket), and Bunias orientalis (Turkish rocket). Journal of Agricultural and Food Chemistry 54:4005−15

doi: 10.1021/jf052756t
[3]

Chan Z. 2012. Proteomic responses of fruits to environmental stresses. Frontiers in Plant Science 3:311

doi: 10.3389/fpls.2012.00311
[4]

Ahlawat Y, Li S, Timilsena PR, Pliakoni ED, Brecht JK, et al. 2022. Identification of senescence-associated genes in broccoli (Brassica oleracea) following harvest. Postharvest Biology and Technology 183:111729

doi: 10.1016/j.postharvbio.2021.111729
[5]

Ghimire U, Pliakoni E, Yu F, Brecht JK, Liu T. 2023. Identifying genes regulated during natural, on-plant senescence in broccoli (Brassica oleracea) in contrast to postharvest senescence. Postharvest Biology and Technology 206:112535

doi: 10.1016/j.postharvbio.2023.112535
[6]

Zhang Y, Chen Y, Guo Y, Yang M, Fu R, Sun Y, et al. 2023. Integration profiling of transcriptome and metabolome reveals the effect of hydrogen peroxide on nucleic acid metabolism in postharvest broccoli during storage. Postharvest Biology and Technology 201:112365

doi: 10.1016/j.postharvbio.2023.112365
[7]

Tarazona NA, Hernández-Arriaga AM, Kniewel R, Prieto MA. 2020. Phasin interactome reveals the interplay of PhaF with the polyhydroxyalkanoate transcriptional regulatory protein PhaD in Pseudomonas putida. Environmental Microbiology 22:3922−36

doi: 10.1111/1462-2920.15175
[8]

Ingolia NT. 2014. Ribosome profiling: new views of translation, from single codons to genome scale. Nature Reviews Genetics 15:205−13

doi: 10.1038/nrg3645
[9]

Guo L, Wang P, Gu Z, Jin X, Yang R. 2017. Proteomic analysis of broccoli sprouts by iTRAQ in response to jasmonic acid. Journal of Plant Physiology 218:16−25

doi: 10.1016/j.jplph.2017.07.003
[10]

Liu MS, Li HC, Lai YM, Lo HF, Chen LFO. 2013. Proteomics and transcriptomics of broccoli subjected to exogenously supplied and transgenic senescence-induced cytokinin for amelioration of postharvest yellowing. Journal of Proteomics 93:133−44

doi: 10.1016/j.jprot.2013.05.014
[11]

Kastell A, Smetanska I, Ulrichs C, Cai Z, Mewis I. 2013. Effects of phytohormones and jasmonic acid on glucosinolate content in hairy root cultures of Sinapis alba and Brassica rapa. Applied Biochemistry and Biotechnology 169:624−35

doi: 10.1007/s12010-012-0017-x
[12]

Fritz VA, Justen VL, Bode AM, Schuster T, Wang M. 2010. Glucosinolate enhancement in cabbage induced by jasmonic acid application. HortScience 45:1188−91

doi: 10.21273/HORTSCI.45.8.1188
[13]

Wu S, Cao G, Adil MF, Tu Y, Wang W, et al. 2020. Changes in water loss and cell wall metabolism during postharvest withering of tobacco (Nicotiana tabacum L.) leaves using tandem mass tag-based quantitative proteomics approach. Plant Physiology and Biochemistry 150:121−32

doi: 10.1016/j.plaphy.2020.02.040
[14]

Huang J, Zhang Y, Jiang L, Yu Z. 2016. Comparative proteomics analysis of differential proteins in response to 6-benzylaminopurine treatment in Pteridium aquilinum senescence. Postharvest Biology and Technology 116:66−74

doi: 10.1016/j.postharvbio.2015.12.030
[15]

McWhite CD, Papoulas O, Drew K, Cox RM, June V, et al. 2020. A pan-plant protein complex map reveals deep conservation and novel assemblies. Cell 181:460−474.e14

doi: 10.1016/j.cell.2020.02.049
[16]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[17]

Kurepa J, Toh-e A, Smalle JA. 2008. 26S proteasome regulatory particle mutants have increased oxidative stress tolerance. The Plant Journal 53:102−14

doi: 10.1111/j.1365-313X.2007.03322.x
[18]

Kwon SM, Min S, Jeoun U, Sim MS, Jung GH, et al. 2021. Global spliceosome activity regulates entry into cellular senescence. The FASEB Journal 35:e21204

doi: 10.1096/fj.202000395RR
[19]

Seraphin B, Rosbash M. 1989. Identification of functional U1 snRNA-pre-mRNA complexes committed to spliceosome assembly and splicing. Cell 59:349−58

doi: 10.1016/0092-8674(89)90296-1
[20]

Nilsen TW, Graveley BR. 2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457−63

doi: 10.1038/nature08909
[21]

Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C, et al. 2005. Thiol redox control via thioredoxin and glutaredoxin systems. Biochemical Society Transactions 33:1375−77

doi: 10.1042/BST0331375
[22]

Liu Y, Li D, Song Q, Zhang T, Li D, et al. 2019. The maize late embryogenesis abundant protein ZmDHN13 positively regulates copper tolerance in transgenic yeast and tobacco. The Crop Journal 7:403−10

doi: 10.1016/j.cj.2018.09.001
[23]

Alsheikh MK, Heyen BJ, Randall SK. 2003. Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. Journal of Biological Chemistry 278:40882−89

doi: 10.1074/jbc.M307151200
[24]

Ohkubo T, Kameyama A, Kamiya K, Kondo M, Hara M. 2020. F-segments of Arabidopsis dehydrins show cryoprotective activities for lactate dehydrogenase depending on the hydrophobic residues. Phytochemistry 173:112300

doi: 10.1016/j.phytochem.2020.112300
[25]

Boddington KF, Graether SP. 2019. Binding of a Vitis riparia dehydrin to DNA. Plant Science 287:110172

doi: 10.1016/j.plantsci.2019.110172
[26]

Cho K, Cho KS, Sohn HB, Ha IJ, Hong SY, et al. 2016. Network analysis of the metabolome and transcriptome reveals novel regulation of potato pigmentation. Journal of Experimental Botany 67:1519−33

doi: 10.1093/jxb/erv549
[27]

Yokoyama T, Ohkubo T, Kamiya K, Hara M. 2020. Cryoprotective activity of Arabidopsis KS-type dehydrin depends on the hydrophobic amino acids of two active segments. Archives of Biochemistry and Biophysics 691:108510

doi: 10.1016/j.abb.2020.108510
[28]

Hara M, Terashima S, Fukaya T, Kuboi T. 2003. Enhancement of cold tolerance and inhibition of lipid peroxidation by citrus dehydrin in transgenic tobacco. Planta 217:290−98

doi: 10.1007/s00425-003-0986-7
[29]

Gepstein S, Sabehi G, Carp MJ, Hajouj T, Nesher MFO, et al. 2003. Large-scale identification of leaf senescence-associated genes: Senescence-associated genes. The Plant Journal 36:629−42

doi: 10.1046/j.1365-313X.2003.01908.x
[30]

Ku KM, Becker TM, Juvik JA. 2016. Transcriptome and metabolome analyses of glucosinolates in two broccoli cultivars following jasmonate treatment for the induction of glucosinolate defense to Trichoplusia ni (Hübner). International Journal of Molecular Sciences 17:1135

doi: 10.3390/ijms17071135
[31]

Oh CS, Beer SV. 2007. AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiology 145:426−36

doi: 10.1104/pp.107.103432