[1]

Patrick JW. 1997. Phloem unloading: sieve element unloading and post-sieve element transport. Annual Review of Plant Biology 48:191−222

doi: 10.1146/annurev.arplant.48.1.191
[2]

Hall AJ, Minchin PEH, Gould N, Clearwater MJ. 2017. A biophysical model of fruit development with distinct apoplasmic and symplasmic pathways. Acta Horticulturae 1160:367−374

[3]

Xiao W, Sheen J, Jang JC. 2000. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Molecular Biology 44:451−61

doi: 10.1023/A:1026501430422
[4]

Kühn C, Grof CPL. 2010. Sucrose transporters of higher plants. Current Opinion in Plant Biology 13:288−98

doi: 10.1016/j.pbi.2010.02.001
[5]

White PJ, Ding G. 2023. Long-distance transport in the xylem and phloem. In Marschner's Mineral Nutrition of Higher Plants, 4th edition, eds. Rengel Z, Cakmak I, White PJ. Academic Press. pp. 73−104. https://doi.org/10.1016/B978-0-12-819773-8.00002-2

[6]

Li Y, Liang G, Nai G, Lu S, Ma W, et al. 2023. VaSUS2 confers cold tolerance in transgenic tomato and Arabidopsis by regulation of sucrose metabolism and ROS homeostasis. Plant Cell Reports 42:505−20

doi: 10.1007/s00299-022-02972-w
[7]

Balparda M, Bouzid M, Martinez MDP, Zheng K, Schwarzländer M, et al. 2023. Regulation of plant carbon assimilation metabolism by post-translational modifications. The Plant Journal 114:1059−79

doi: 10.1111/tpj.16240
[8]

Garg V, Kühn C. 2022. Subcellular dynamics and protein-protein interactions of plant sucrose transporters. Journal of Plant Physiology 273:153696

doi: 10.1016/j.jplph.2022.153696
[9]

Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, et al. 2011. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207−11

doi: 10.1126/science.1213351
[10]

Bai Q, Chen X, Zheng Z, Feng J, Zhang Y, et al. 2023. Vacuolar Phosphate Transporter1 (VPT1) may transport sugar in response to soluble sugar status of grape fruits. Horticulture Research 10:uhac260

doi: 10.1093/hr/uhac260
[11]

Hedrich R, Sauer N, Neuhaus HE. 2015. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. Current Opinion in Plant Biology 25:63−70

doi: 10.1016/j.pbi.2015.04.008
[12]

Gautam T, Dutta M, Jaiswal V, Zinta G, Gahlaut V, et al. 2022. Emerging roles of SWEET sugar transporters in plant development and abiotic stress responses. Cells 11:1303

doi: 10.3390/cells11081303
[13]

Salvi P, Agarrwal R, Kaja, Gandass N, Manna M, et al. 2022. Sugar transporters and their molecular tradeoffs during abiotic stress responses in plants. Physiologia Plantarum 174:e13652

doi: 10.1111/ppl.13652
[14]

Yang C, Zhao X, Luo Z, Wang L, Liu M. 2023. Genome-wide identification and expression profile analysis of SWEET genes in Chinese jujube. Peer J 11:e14704

doi: 10.7717/peerj.14704
[15]

Gao Y, Wang ZY, Kumar V, Xu XF, Yuan DP, et al. 2018. Genome-wide identification of the SWEET gene family in wheat. Gene 642:284−92

doi: 10.1016/j.gene.2017.11.044
[16]

Kumawat S, Sharma Y, Vats S, Sudhakaran S, Sharma S, et al. 2022. Understanding the role of SWEET genes in fruit development and abiotic stress in pomegranate (Punica granatum L.). Molecular Biology Reports 49:1329−39

doi: 10.1007/s11033-021-06961-2
[17]

Hir RL, Spinner L, Klemens PAW, Chakraborti D, de Marco F, et al. 2015. Disruption of the sugar transporters AtSWEET11 and AtSWEET12 affects vascular development and freezing tolerance in Arabidopsis. Molecular Plant 8:1687−90

doi: 10.1016/j.molp.2015.08.007
[18]

Hu W, Hua X, Zhang Q, Wang J, Shen Q, et al. 2018. New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics. BMC Plant Biology 18:270

doi: 10.1186/s12870-018-1495-y
[19]

Liu HT, Lyu WY, Tian SH, Zou XH, Zhang LQ, et al. 2019. The SWEET family genes in strawberry: identification and expression profiling during fruit development. South African Journal of Botany 125:176−87

doi: 10.1016/j.sajb.2019.07.002
[20]

Miao H, Sun P, Liu Q, Miao Y, Liu J, et al. 2017. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Scientific Reports 7:3536

doi: 10.1038/s41598-017-03872-w
[21]

Li Y, Feng S, Ma S, Sui X, Zhang Z. 2017. Spatiotemporal expression and substrate specificity analysis of the cucumber SWEET gene family. Frontiers in Plant Science 8:1855

doi: 10.3389/fpls.2017.01855
[22]

Feng CY, Han JX, Han XX, Jiang J. 2015. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573:261−72

doi: 10.1016/j.gene.2015.07.055
[23]

Wei X, Liu F, Chen C, Ma F, Li M. 2014. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Frontiers in Plant Science 5:569

doi: 10.3389/fpls.2014.00569
[24]

Eckardt NA. 2021. Sweeter than SWEET: a single-cell leaf vasculature transcriptome atlas. The Plant Cell 33:445−46

doi: 10.1093/plcell/koaa059
[25]

Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201:1150−55

doi: 10.1111/nph.12445
[26]

Chandran D. 2015. Co-option of developmentally regulated plant SWEET transporters for pathogen nutrition and abiotic stress tolerance. IUBMB Life 67:461−71

doi: 10.1002/iub.1394
[27]

Guan Y, Huang X, Zhu J, Gao J, Zhang H, et al. 2008. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiology 147:852−63

doi: 10.1104/pp.108.118026
[28]

Chong J, Piron MC, Meyer S, et al. 2014. The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. Journal of Experimental Botany 65:6589−601

doi: 10.1093/jxb/eru375
[29]

Breia R, Conde A, Pimentel D, Conde C, Fortes AM, et al. 2020. VvSWEET7 is a mono-and disaccharide transporter up-regulated in response to botrytis cinerea infection in grape berries. Frontiers in Plant Science 10:1753

doi: 10.3389/fpls.2019.01753
[30]

Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163:1338−52

doi: 10.1104/pp.113.224972
[31]

Seo PJ, Park JM, Kang SK, Kim SG, Park CM. 2011. An Arabidopsis senescence-associated protein SAG29 regulates cell viability under high salinity. Planta 233:189−200

doi: 10.1007/s00425-010-1293-8
[32]

Julius BT, Leach KA, Tran TM, Mertz RA, Braun DM. 2017. Sugar transporters in plants: new insights and discoveries. Plant and Cell Physiology 58:1442−60

doi: 10.1093/pcp/pcx090
[33]

Durand M, Porcheron B, Hennion N, Maurousset L, Lemoine R, et al. 2016. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots. Plant Physiology 170:1460−79

doi: 10.1104/pp.15.01926
[34]

Huang D, Chen Y, Liu X, Ni D, Bai L, et al. 2022. Genome-wide identification and expression analysis of the SWEET gene family in daylily (Hemerocallis fulva) and functional analysis of HfSWEET17 in response to cold stress. BMC Plant Biology 22:211

doi: 10.1186/s12870-022-03609-6
[35]

Nie P, Xu G, Yu B, Lyu D, Xue X, et al. 2022. Genome-wide identification and expression profiling reveal the potential functions of the SWEET gene family during the sink organ development period in apple (Malus × domestica Borkh.). Agronomy 12:1747

doi: 10.3390/agronomy12081747
[36]

Xie H, Wang D, Qin Y, Ma A, Fu J, et al. 2019. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development. BMC Plant Biology 19:499

doi: 10.1186/s12870-019-2120-4
[37]

Wang J, Xue X, Zeng H, Li J, Chen L. 2022. Sucrose rather than GA transported by AtSWEET13 and AtSWEET14 supports pollen fitness at late anther development stages. New Phytologist 236:525−37

doi: 10.1111/nph.18368
[38]

Schmitt AJ, Roy R, Klinkenberg PM, Jia M, Carter CJ. 2018. The octadecanoid pathway, but not COI1, is required for nectar secretion in Arabidopsis thaliana. Frontiers in Plant Science 9:1060

doi: 10.3389/fpls.2018.01060
[39]

Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, et al. 2014. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508:546−49

doi: 10.1038/nature13082
[40]

Fei H, Yang Z, Lu Q, Wen X, Zhang Y, et al. 2021. OsSWEET14 cooperates with OsSWEET11 to contribute to grain filling in rice. Plant Science 306:110851

doi: 10.1016/j.plantsci.2021.110851
[41]

Xiao Q, Zhen L, Wang Y, Hou X, Wei X, et al. 2022. Genome-wide identification, expression and functional analysis of sugar transporters in sorghum (Sorghum bicolor L.). Journal of Integrative Agriculture 21:2848−64

doi: 10.1016/j.jia.2022.07.034
[42]

Eom JS, Chen LQ, Sosso D, Julius BT, Lin IW, et al. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology 25:53−62

doi: 10.1016/j.pbi.2015.04.005
[43]

Zhang X, Feng C, Wang M, Li T, Liu X, et al. 2021. Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits. Horticulture Research 8:186

doi: 10.1038/s41438-021-00624-w
[44]

Yu M, Chen L, Liu D, Sun D, Shi G, et al. 2022. Enhancement of photosynthetic capacity in spongy mesophyll cells in white leaves of Actinidia kolomikta. Frontiers in Plant Science 13:856732

doi: 10.3389/fpls.2022.856732
[45]

Zhang X, Wen B, Zhang Y, Li Y, Yu C, Peng Z, et al. 2022. Transcriptomic and biochemical analysis reveal differential regulatory mechanisms of photosynthetic pigment and characteristic secondary metabolites between high amino acids green-leaf and albino tea cultivars. Scientia Horticulturae 295:110823

doi: 10.1016/j.scienta.2021.110823