[1]

Ma JF, Ryan PR, Delhaize E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in Plant Science 6(6):273−78

doi: 10.1016/S1360-1385(01)01961-6
[2]

Matsumoto H, Hirasawa E, Morimura S, Takahashi E. 1976. Localization of aluminum in tea leaves. Plant and Cell Physiology 17(3):627−31

doi: 10.1093/oxfordjournals.pcp.a075318
[3]

Sun L, Zhang M, Liu X, Mao Q, Shi C, et al. 2020. Aluminium is essential for root growth and development of tea plants (Camellia sinensis). Journal of Integrative Plant Biology 62(6):984−97

doi: 10.1111/jipb.12942
[4]

Zhang X, Liu L, Luo S, Ye X, Wen W. 2023. Research advances in aluminum tolerance and accumulation in tea plant (Camellia sinensis). Beverage Plant Research 3:18

doi: 10.48130/BPR-2023-0018
[5]

Huang Y, Duan X, Hu X, Deng Z, Chen F. 2011. Effects of simulated acid rain and Al regulation on tea quality and its Al accumulation. Journal of Tropical and Subtropical Botany 19(3):254−59

doi: 10.3969/j.issn.1005-3395.2011.03.010
[6]

Wong MH, Zhang ZQ, Wong JWC, Lan CY. 1998. Trace metal contents (Al, Cu and Zn) of tea: tea and soil from two tea plantations, and tea products from different provinces of China. Environmental Geochemistry and Health 20:87−94

doi: 10.1023/A:1006545825302
[7]

Wang R. 2002. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter?. The FASEB Journal 16(13):1792−98

doi: 10.1096/fj.02-0211hyp
[8]

Bloem E, Riemenschneider A, Volker J, Papenbrock J, Schmidt A, et al. 2004. Sulphur supply and infection with Pyrenopeziza brassicae influence L-cysteine desulphydrase activity in Brassica napus L. Journal of Experimental Botany 55:2305−12

doi: 10.1093/jxb/erh236
[9]

Zhang J, Zhou M, Zhou H, Zhao D, Gotor C, et al. 2021. Hydrogen sulfide, a signaling molecule in plant stress responses. Journal of Integrative Plant Biology 63:146−60

doi: 10.1111/jipb.13022
[10]

Xing A, Tian Z, Chu R, Xu X, Yin J, et al. 2023. Effects of nitric oxide on response of different tissues to aluminum stress in Camellia sinensis (L.) O. Kuntze. Jiangsu Agricultural Sciences 51(7):110−17

doi: 10.15889/j.issn.1002-1302.2023.07.016
[11]

Hao J, Peng A, Li Y, Zuo H, Li P, et al. 2022. Tea plant roots respond to aluminum-induced mineral nutrient imbalances by transcriptional regulation of multiple cation and anion transporters. BMC Plant Biology 22:203

doi: 10.1186/s12870-022-03570-4
[12]

Li L, Wang Y, Shen W. 2012. Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. BioMetals 25:617−31

doi: 10.1007/s10534-012-9551-9
[13]

Zhang B, Zheng X, Huang W, Chen Y, Shen Z, et al. 2019. Effect of hydrogen sulfide on growth and physiological Indices of wheat seedlings under cadmium stress. Journal of Triticeae Crops 39(3):329−37

doi: 10.7606/j.issn.1009-1041.2019.03.11
[14]

Ruf M, Brunner I. 2003. Vitality of tree fine roots: reevaluation of the tetrazolium test. Tree Physiology 4:257−63

doi: 10.1093/treephys/23.4.257
[15]

Hu B, Huang H, Ji Y, Zhao X, Qi J, et al. 2018. Evaluation of the optimum concentration of chlorophyll extract for determination of chlorophyll content by spectrophotometry. Pratacultural Science 35(8):1965−74

doi: 10.11829/j.issn.1001-0629.2017-0418
[16]

Alatawi A, Mfarrej MFB, Alshegaihi RM, Asghar MA, Mumtaz S, et al. 2023. Application of silicon and sodium hydrosulfide alleviates arsenic toxicity by regulating the physio-biochemical and molecular mechanisms of Zea mays. Environmental Science and Pollution Research 30:76555−74

doi: 10.1007/s11356-023-27739-y
[17]

Bates LS, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant and Soil 39(1):205−7

doi: 10.1007/BF00018060
[18]

AQSIQ. 2018. GB/T 8313-2018 Determination of total polyphenols and catechins content in tea. Inspection and Quarantine of People's Republic of China. http://down.foodmate.net/standard/sort/3/53218.html

[19]

AQSIQ. 2013. GB/T 8314-2013 Tea-determination of free amino acids content. Inspection and Quarantine of People's Republic of China. http://down.foodmate.net/standard/sort/3/39356.html

[20]

AQSIQ. 2013. GB/T 8312-2013 Tea-determination of caffeine content. Inspection and Quarantine of People's Republic of China. http://down.foodmate.net/standard/sort/3/39355.html

[21]

Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M. 2017. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Frontiers in Plant Science 8:1767

doi: 10.3389/fpls.2017.01767
[22]

Singh D, Sharma NL, Singh D, Siddiqui MH, Taunk J, et al. 2023. Exogenous hydrogen sulfide alleviates chromium toxicity by modulating chromium, nutrients and reactive oxygen species accumulation, and antioxidant defence system in mungbean (Vigna radiata L.) seedlings. Plant Physiology and Biochemistry 8:107767

doi: 10.1016/j.plaphy.2023.107767
[23]

Wang H, Fang J, Zhang Y, Hou J, Liu W, et al. 2019. Interactions between hydrogen sulphide and nitric oxide regulate two soybean citrate transporters during the alleviation of aluminium toxicity. Plant Cell and Environment 42(8):2340−56

doi: 10.1111/pce.13555
[24]

Zhang J, Liang X, Simin X, Liang Y, Liang S, et al. 2023. Effects of hydrogen sulfide on the growth and physiological characteristics of Miscanthus sacchariflorus seedlings under cadmium stress. Ecotoxicology and Environmental Safety 263:115281

doi: 10.1016/j.ecoenv.2023.115281
[25]

Fung KF, Carr HP, Zhang J, Wong MH. 2008. Growth and nutrient uptake of tea under different aluminium concentrations. Journal of the Science of Food and Agriculture 88:1582−91

doi: 10.1002/jsfa.3254
[26]

Hajiboland R, Panda CK, Lastochkina O, Gavassi MA, Habermann G, et al. 2023. Aluminum Toxicity in Plants: Present and Future. Journal of Plant Growth Regulation 42:3967−99

doi: 10.1007/s00344-022-10866-0
[27]

Ali B, Qian P, Sun R, Farooq MA, Gill RA, et al. 2015. Hydrogen sulfide alleviates the aluminum-induced changes in Brassica napus as revealed by physiochemical and ultrastructural study of plant. Environmental Science and Pollution Research 22:3068−81

doi: 10.1007/s11356-014-3551-y
[28]

Hossain MA, Hossain AKMZ, Kihara T, Koyama H, Hara T. 2005. Aluminum-induced lipid peroxidation and lignin deposition are associated with an increase in H2O2 generation in wheat seedlings. Soil Science and Plant Nutrition 51:223−30

doi: 10.1111/j.1747-0765.2005.tb00026.x
[29]

Zhang H, Tan ZQ, Hu LY, Wang SH, Luo JP, Jones RL. 2010. Hydrogen Sulfide Alleviates Aluminum Toxicity in Germinating Wheat Seedlings. Journal of Integrative Plant Biology 52(6):556−567

doi: 10.1111/j.1744-7909.2010.00946.x
[30]

Szabados L, Savouré A. 2010. Proline: a multifunctional amino acid. Trends in Plant Science 15(2):89−97

doi: 10.1016/j.tplants.2009.11.009
[31]

Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science 7(9):405−410

doi: 10.1016/s1360-1385(02)02312-9
[32]

Ghanati F, Morita A, Yokota H. 2005. Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant and Soil 276:133−141

doi: 10.1007/s11104-005-3697-y
[33]

Dawood M, Cao F, Jahangir MM, Zhang GP, Wu FB. 2012. Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. Journal of Hazardous Materials 209–210(1):121−128

doi: 10.1016/j.jhazmat.2011.12.076
[34]

Rausch T, Wachter A. 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends in Plant Science 10(10):503−509

doi: 10.1016/j.tplants.2005.08.006
[35]

Chen J, Wang WH, Wu FH, You CY, Liu TW, et al. 2013. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings. Plant and Soil 362:301−318

doi: 10.1007/s11104-012-1275-7
[36]

Shi H, Ye TT, Chan ZL. 2013. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiology and Biochemistry 71:226−234

doi: 10.1016/j.plaphy.2013.07.021
[37]

Zhu CQ, Wei QQ, Wen JH, Kong YL, Xiang XJ, et al. 2022. Unearthing the alleviatory mechanisms of hydrogen sulfide in aluminum toxicity in rice. Plant Physiology and Biochemistry 182:133−144

doi: 10.1016/j.plaphy.2022.04.006
[38]

Mohsenzadeh S, Esmaeili M, Moosavi F, Shahrtash M, Saffari B, Mohabatkar H. 2011. Plant glutathione S-transferase classification, structure and evolution. African Journal of Biotechnology 10(8):8160−8165

doi: 10.5897/AJB11.1024
[39]

Chew O, Whelan J, Millar AH. 2003. Molecular definition of the ascorbate–glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. The Journal of Biological Chemistry 278(47):46869−46877

doi: 10.1074/jbc.M307525200
[40]

Devi SS, Saha B, Awasthi JP, Regon P, Panda SK. 2020. Redox status and oxalate exudation determines the differential tolerance of two contrasting varieties of 'Assam tea' [Camelia sinensis (L.) O. Kuntz] in response to aluminum toxicity. Horticulture, Environment, and Biotechnology 61(3):485−499

doi: 10.1007/s13580-020-00241-x
[41]

Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, et al. 2011. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany 62(13):4481−4493

doi: 10.1093/jxb/err145
[42]

Yu Y, Dong J, Li R, Zhao X, Zhu ZH, et al. 2023. Sodium hydrosulfide alleviates aluminum toxicity in Brassica napus through maintaining H2S, ROS homeostasis and enhancing aluminum exclusion. Science of the Total Environment 858:160073

doi: 10.1016/j.scitotenv.2022.160073
[43]

Peng AQ, Yu KK, Li YY, Zuo H, Li P, et al. 2023. Aluminum and Fluoride Stresses Altered Organic Acid and Secondary Metabolism in Tea (Camellia sinensis) Plants: Influences on Plant Tolerance, Tea Quality and Safety, Aluminum induced metabolic responses in two tea cultivars. International Journal of Molecular Sciences 24:4640

doi: 10.3390/ijms24054640
[44]

Morita A, Yanagisawa O, Maeda S, Takatsu S, Ikka T. 2011. Tea plant (Camellia sinensis L.) roots secrete oxalic acid and caffeine into medium containing aluminum. Soil Science and Plant Nutrition 57(6):796−802

doi: 10.1080/00380768.2011.629176
[45]

Fu ZP, Jiang XL, Kong DX, Chen YF, Zhuang JH, et al. 2022. Flavonol-Aluminum Complex Formation: Enhancing Aluminum Accumulation in Tea Plants. Journal of agricultural and food chemistry 70(43):14096−14108

doi: 10.1021/acs.jafc.2c04963