[1]

Bouramdane AA. 2022. Mix Électrique Marocain: Défis Face à l’Urgence Climatique. énergie/mines & carriers magazine. https://energiemines.ma/mix-electrique-marocain-defis-face-a-lurgence-climatique/

[2]

Bouramdane AA. 2023. Climate Resilience: Insights from Global Negotiations and Morocco's Path to Sustainability. London, United Kingdom: Lambert Academic Publishing (LAP). www.morebooks.shop/shop-ui/shop/product/9786206750833, www.morebooks.shop/shop-ui/shop/translation-bundle/a0559d0d940

[3]

Bouramdane AA. 2023. Africa's vulnerability and the road ahead from COP27 to COP28. énergie/mines & carriers magazine. https://energiemines.ma/africas-vulnerability-and-the-road-ahead-from-cop27-to-cop28/

[4]

Bouramdane AA. 2024. Morocco's path to a climate-resilient energy transition: identifying emission drivers, proposing solutions, and addressing barriers. Science and Technology for Energy Transition 79:26

doi: 10.2516/stet/2024021
[5]

Bouramdane AA. 2022. PV, CSP et Éolien au Maroc: Intégration à Géométrie Variable. énergie/mines & carriers magazine. https://energiemines.ma/?s=PV%2C+CSP+et+%C3%89olien+au+Maroc

[6]

Bouramdane AA. 2023. Ma Thèse En Une Page: Choix Optimal de Technologies Renouvelables au Maroc en Fonction des Scénarios de Pénétration et du Climat. La Revue de l'Énergie N°668, éditée par le Conseil Français de l'Énergie. 12 rue de Saint-Quentin F-75010 Paris. www.larevuedelenergie.com/choix-optimal-de-technologies-renouvelables-au-maroc-en-fonction-des-scenarios-de-penetration-et-, www.larevuedelenergie.com/abonnement/la-revue-de-lenergie-668/

[7]

Bouramdane AA. 2022. Chaleur Caniculaire, Incendies Gigantesques à Répétition: Des Signes du Changement Climatique? énergie/mines & carriers magazine. https://energiemines.ma/chaleur-caniculaire-incendies-gigantesques-a-repetition-des-signes-du-changement-climatique/

[8]

Bouramdane AA. 2022. Sécheresse: L'extrême Va-t-il Progressivement Devenir la Norme? énergie/mines & carriers magazine. https://energiemines.ma/secheresse-lextreme-va-t-il-progressivement-devenir-la-norme/

[9]

Bouramdane AA. 2023. Climate risks and energy transition in Morocco: vulnerability to climate losses and damages and uncertainty in the renewable electricity mix under different Penetration. London, United Kingdom: Lambert Academic Publishing (LAP). www.morebooks.shop/shop-ui/shop/product/9786206179801, www.morebooks.shop/gb/translation_bundle_cb314d0c040

[10]

Bouramdane AA. 2024. Enhancing disaster management in smart cities through MCDM-AHP analysis amid 21st century challenges. Information System and Smart City 3:3−10

doi: 10.59400/issc.v3i1.189
[11]

Bouramdane AA. 2022. Assessment of CMIP6 multi-model projections worldwide: which regions are getting warmer and are going through a drought in Africa and Morocco? what changes from CMIP5 to CMIP6? Sustainability 15:690

doi: 10.3390/su15010690
[12]

Bouramdane AA. 2023. Determining vulnerable areas to warming and drought in Africa and Morocco based on CMIP6 projections: towards the implementation of mitigation and adaptation measures. EGU general assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-2456. https://doi.org/10.5194/egusphere-egu23-2456

[13]

Bouramdane AA. 2024. Shaping resilient buildings and cities: climate change impacts, metrics, and strategies for mitigation and adaptation. Information System and Smart City 3:2−10

doi: 10.59400/issc.v3i1.190
[14]

Amirioun MH, Aminifar F, Shahidehpour M. 2019. Resilience-promoting proactive scheduling against hurricanes in multiple energy carrier microgrids. IEEE Transactions on Power Systems 34:2160−68

doi: 10.1109/TPWRS.2018.2881954
[15]

Shojaeiyan S, Dehghani M, Siano P. 2023. Microgrids resiliency enhancement against natural catastrophes based multiple cooperation of water and energy hubs. Smart Cities 6:1765−85

doi: 10.3390/smartcities6040082
[16]

Eskandarpour R, Lotfi H, Khodaei A. 2016. Optimal microgrid placement for enhancing power system resilience in response to weather events. 2016 North American Power Symposium (NAPS), Denver, CO, USA, 18-20 September 2016. USA: IEEE. pp. 1−6. https://doi.org/10.1109/NAPS.2016.7747938

[17]

Shen Y, Gu C, Ma Z, Yang X, Zhao P. 2021. A two-stage resilience enhancement for distribution systems under hurricane attacks. IEEE Systems Journal 15:653−61

doi: 10.1109/JSYST.2020.2997186
[18]

Moreno R, Trakas DN, Jamieson M, Panteli M, Mancarella P, et al. 2022. Microgrids against wildfires: distributed energy resources enhance system resilience. IEEE Power and Energy Magazine 20:78−89

doi: 10.1109/MPE.2021.3122772
[19]

The World Bank. 2009. Disaster risk reduction and emergency management in Armenia. Global Facility for Disaster Reduction and Recovery. Report. World Bank Publications. https://documents1.worldbank.org/curated/en/987411468005434115/pdf/686590ESW0P1100Emergency0Management.pdf

[20]

Jimenez-Estevez GA, Palma-Behnke R, Ortiz-Villalba D, Nuñez Mata O, Silva Montes C. 2014. It takes a village: social SCADA and approaches to community engagement in isolated microgrids. IEEE Power and Energy Magazine 12:60−69

doi: 10.1109/MPE.2014.2317419
[21]

Fragniere E, Sandoz S, Abdenadher N, Moussa M, Di Marzo Serugendo G, et al. 2023. Fostering "energy communities": an ethnographic-SECI approach to user-centered residential micro-smart grid adoption. 2023 11th International Conference on Smart Grid (icSmartGrid). Paris, France, 4-7 June 2023. USA: IEEE. pp. 1−5. https://doi.org/10.1109/icSmartGrid58556.2023.10171075

[22]

Saaty TL. 1982. Decision Making for Leaders: The Analytical Hierarchy Process for Decisions in a Complex World. Pittsburgh, Pa.: University of Pittsburgh.

[23]

Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences 1:83−98

doi: 10.1504/ijssci.2008.017590
[24]

Aydinhan V, Ozel HB, Imren E, Kurt R, Sevik H. 2022. Use of some multicriteria decision-making methods such as grey relational analysis (GRA), the complex proportional assessment (COPRAS), and weighted aggregated sum product assessment (WASPAS) in selection of some Anatolian pine (Pinus nigra Arnold. ) origi. World Journal of Advanced Research and Reviews 16:539−52

doi: 10.30574/wjarr.2022.16.3.1374
[25]

Ghosh A, Mal P, Majumdar A. 2019. Technique for order of preference by similarity to ideal solution (TOPSIS). In Advanced Optimization and Decision-Making Techniques in Textile Manufacturing, eds. Ghosh A, Mal P, Majumdar A. Boca Raton: CRC Press. pp. 35−63 https://doi.org/10.1201/9780429504419-3

[26]

Brans JP, Vincke P. 1985. A preference ranking organisation method: (The PROMETHEE method for multiple criteria decision-making). Management Science 31:647−56

doi: 10.1287/mnsc.31.6.647
[27]

Saaty TL. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15:234−81

doi: 10.1016/0022-2496(77)90033-5
[28]

Saaty TL. 1994. How to make a decision: the analytic hierarchy process. Interfaces 24:19−43

doi: 10.1287/inte.24.6.19
[29]

Bognár F, Benedek P. 2022. A novel AHP-PRISM risk assessment method—an empirical case study in a nuclear power plant. Sustainability 14:11023

doi: 10.3390/su141711023
[30]

Firat M. 2021. Identification of the priority regions in the customer water meters replacement using the AHP and ELECTRE methods. Sigma Journal of Engineering and Natural Sciences 39(4):331−42

doi: 10.14744/sigma.2021.00022
[31]

Krouska A, Kabassi K, Troussas C, Sgouropoulou C. 2022. Personalizing environmental awareness through smartphones using AHP and PROMETHEE II. Future Internet 14:66

doi: 10.3390/fi14020066
[32]

Kumar A, Kaur K. 2022. MCDM - based framework to solve decision making problems in software engineering. 3rd International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India. IEEE, 11−12 November 2022. pp. 1−5. https://doi.org/10.1109/ICICT55121.2022.10064599

[33]

Stojčić M, Zavadskas E, Pamučar D, Stević Ž, Mardani A. 2019. Application of MCDM methods in sustainability engineering: a literature review 2008–2018. Symmetry 11:350

doi: 10.3390/sym11030350
[34]

Seker S. 2022. IoT based sustainable smart waste management system evaluation using MCDM model under interval-valued q-rung orthopair fuzzy environment. Technology in Society 71:102100

doi: 10.1016/j.techsoc.2022.102100
[35]

Radmehr A, Bozorg-Haddad O, Loáiciga HA. 2022. Developing strategies for agricultural water management of large irrigation and drainage networks with fuzzy MCDM. Water Resources Management 36:4885−912

doi: 10.1007/s11269-022-03192-3
[36]

Değirmenci S, Bingöl F, Sofuoglu SC. 2018. MCDM analysis of wind energy in Turkey: decision making based on environmental impact. Environmental Science and Pollution Research 25:19753−66

doi: 10.1007/s11356-018-2004-4
[37]

Stanković JJ, Marjanović I, Papathanasiou J, Drezgić S. 2021. Social, economic and environmental sustainability of port regions: MCDM approach in composite index creation. Journal of Marine Science and Engineering 9:74

doi: 10.3390/jmse9010074
[38]

Bouramdane AA. 2023. Identifying Large-Scale Photovoltaic and Concentrated Solar Power Hot Spots: MultiCriteria Decision-Making Framework. ICEER 2023: International Conference on Energy and Environment Research, Paris, France, 6−7 Feb., 2023. World Academy of Science, Engineering and Technology, International Journal of Energy and Environmental Engineering, 17(2):1 https://publications.waset.org/abstracts/157186/identifying-large-scale-photovoltaic-and-concentrated-solar-power-hot-spots-multi-criteria-decision-making-framework

[39]

Bouramdane AA. 2023. Unlocking photovoltaic potential in climate action-challenged countries. London, United Kingdom: Lambert Academic Publishing (LAP). www.morebooks.shop/shop-ui/shop/product/9786206844372

[40]

Bouramdane AA. 2023. Spatial suitability assessment of onshore wind systems using the analytic hierarchy process. ICEER 2023: International Conference on Energy and Environment Research, Istanbul, Türkiye, 24−25 July, 2023. World Academy of Science, Engineering and Technology International Journal of Energy and Environmental Engineering, 17(7): 1. https://publications.waset.org/abstracts/157232/spatial-suitability-assessment-of-onshore-wind-systems-using-the-analytic-hierarchy-process

[41]

Bouramdane AA. 2023. Site suitability of offshore wind energy: a combination of geographic referenced information and analytic hierarchy process. ICEER 2023: International Conference on Energy and Environment Research, Paris, France, 6−7 Feb., 2023. World Academy of Science, Engineering and Technology, International Journal of Energy and Environmental Engineering, 17(2):1. https://publications.waset.org/abstracts/157240/site-suitability-of-offshore-wind-energy-a-combination-of-geographic-referenced-information-and-analytic-hierarchy-process

[42]

Bouramdane AA. 2023. Potential site for offshore floating photovoltaic systems in Morocco: evaluation criteria required considering climate change effects to achieve the energy trilemma. London, United Kingdom: Lambert Academic Publishing (LAP). www.morebooks.shop/shop-ui/shop/product/9786206159643

[43]

Bouramdane AA. 2023. Préservation des Ressources d’Eau et Transition Énergétique: Point sur le Photovoltaïque Flottant. énergie/mines & carriers magazine. https://energiemines.ma/preservation-des-ressources-deau-et-transition-energetique-point-sur-le-photovoltaique-flottant/

[44]

Abadi M, Moore DR. 2022. Selection of circular proposals in building projects: an MCDM model for lifecycle circularity assessments using AHP. Buildings 12:1110

doi: 10.3390/buildings12081110
[45]

Can GF, Toktaş P, Pakdil F. 2021. Six Sigma Project Prioritization and Selection Using AHP–CODAS Integration: A Case Study in Healthcare Industry. IEEE Transactions on Engineering Management 70:3587−600

doi: 10.1109/TEM.2021.3100795
[46]

Wu HC. 2022. Priority criteria for community-based care resource allocation for health equity: socioeconomic status and demographic characteristics in the multicriteria decision-making method. Healthcare 10:1358

doi: 10.3390/healthcare10071358
[47]

Lee B, Oh KH, Park HJ, Kim UM, Youn HY. 2014. Resource reallocation of virtual machine in cloud computing with MCDM algorithm. 2014 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery. Shanghai, China, 13−15 October 2014. US: IEEE. pp. 470−77. https://doi.org/10.1109/CyberC.2014.87

[48]

Pathan AI, Girish Agnihotri PG, Said S, Patel D. 2022. AHP and TOPSIS based flood risk assessment- a case study of the Navsari City, Gujarat, India. Environmental Monitoring and Assessment 194:509

doi: 10.1007/s10661-022-10111-x
[49]

Shirali GA, Rashnoudi P, Salehi V, Ghanbari S. 2023. A hierarchical assessment of resilience engineering indicators in petrochemical industries using AHP and TOPSIS. Human Factors and Ergonomics in Manufacturing & Service Industries 33:3−26

doi: 10.1002/hfm.20980
[50]

Bouramdane AA. 2023. How to manage vulnerabilities in the renewable energy environment? Renewable Energy Cyber Security Forum, Berlin, Germany, 6-7 June 2023. Germany: Leadvent Group.

[51]

Bouramdane AA. 2023. The role of smart grids in achieving Paris Agreement goals and determining optimal cybersecurity measures. énergie/mines & carrières magazine. https://doi.org/10.5281/zenodo.8418765, https://energiemines.ma/role-of-smart-grids-in-achieving-paris-agreement-goals-and-determining-optimal-cybersecurity-measures/

[52]

Bouramdane AA. 2023. Cyberattacks in smart grids: challenges and solving the multi-criteria decision-making for cybersecurity options, including ones that incorporate artificial intelligence, using an analytical hierarchy process. Journal of Cybersecurity and Privacy 3:662−705

doi: 10.3390/jcp3040031
[53]

Bouramdane AA. 2023. Optimal water management strategies: paving the way for sustainability in smart cities. Smart Cities 6:2849−82

doi: 10.3390/smartcities6050128
[54]

Bouramdane AA. 2023. Un Avenir Hydrogéné au Maroc: Dessalement de l'Eau – Défis et Promesses. énergie/mines & carriers magazine. https://energiemines.ma/un-avenir-hydrogene-au-maroc-dessalement-de-leau-defis-et-promesses/

[55]

Bouramdane AA. 2024. Crafting an optimal portfolio for sustainable hydrogen production choices in Morocco. Fuel 358:130292

doi: 10.1016/j.fuel.2023.130292
[56]

Bouramdane AA. 2023. Hydrogen production technologies: modeling, pros and cons, applications, suitable regions, and unveiling sustainability and economics through LCA and LCC. London, United Kingdom: Lambert Academic Publishing (LAP). www.morebooks.shop/shop-ui/shop/product/9786206781745

[57]

Bouramdane AA. Assessing The environmental impact of hydrogen fuel cell technologies (PEMFCs, SOFCs, AFCs): a cradle-to-gate attributional life cycle analysis. Green Economics 1(2):82−110 http://jomardpublishing.com/UploadFiles/Files/journals/GE/V1N2/BouramdaneA.pdf

[58]

Bouramdane AA. 2023. Production d'hydrogène vert au Maroc: Quelle technologie est la plus adaptée à différents niveaux de pénétration renouvelable? énergie/mines & carriers magazine. https://energiemines.ma/production-hydrogene-vert-maroc-technologie-renouvelable/

[59]

Bouramdane AA. 2023. Hydrogène, Captage et Stockage du CO2 et Sobriété Énergétique: Tour d’Horizon. én ergie/mines & carrières magazine. https://energiemines.ma/hydrogene-captage-et-stockage-du-co2-et-sobriete-energetique-tour-dhorizon/

[60]

Bouramdane AA. 2023. L'Oasis d'Hydrogène Vert Pour Une Agriculture Marocaine Durable. La Jaune et la Rouge N°790, Le Magazine des Alumni de Polytechnique, Paris. www.lajauneetlarouge.com/loasis-dhydrogene-vert-pour-une-agriculture-marocaine-durable/

[61]

Saaty TL. 1990. The analytic hierarchy process: planning, priority setting, resource allocation. New York, London: McGraw-Hill International Book Co. pp. 271−78.

[62]

Saaty RW. 1987. The analytic hierarchy process—what it is and how it is used. Mathematical Modelling 9:161−76

doi: 10.1016/0270-0255(87)90473-8
[63]

Garip S, Bilgen M, Altin N, Ozdemir S, Sefa İ. 2022. Reliability analysis of centralized and decentralized controls of microgrid. 2022 11th International Conference on Renewable Energy Research and Application (ICRERA), Istanbul, Turkey, 18−21 September 2022. US: IEEE. pp. 557−61. https://doi.org/10.1109/ICRERA55966.2022.9922738

[64]

Saeed MH, Wang F, Kalwar BA, Iqbal S. 2021. A review on microgrids’ challenges & perspectives. IEEE Access 9:166502−17

doi: 10.1109/access.2021.3135083
[65]

Chamana M, Mazhari I, Parkhideh B, Chowdhury BH. 2014. Multi-mode operation of different PV/BESS architectures in a microgrid: grid-tied and island mode. 2014 IEEE PES T&D Conference and Exposition, Chicago, IL, USA, 14−17 April 2014. US: IEEE. pp. 1−5. https://doi.org/10.1109/TDC.2014.6863468

[66]

Ganjian-Aboukheili M, Shahabi M, Shafiee Q, Guerrero JM. 2020. Seamless transition of microgrids operation from grid-connected to islanded mode. IEEE Transactions on Smart Grid 11:2106−14

doi: 10.1109/TSG.2019.2947651
[67]

Hartmann B, Táczi I, Talamon A, Vokony I. 2021. Island mode operation in intelligent microgrid—extensive analysis of a case study. International Transactions on Electrical Energy Systems 31:e12950

doi: 10.1002/2050-7038.12950
[68]

Palizban O, Kauhaniemi K. 2013. Microgrid control principles in island mode operation. 2013 IEEE Grenoble Conference, Grenoble, France. IEEE, 16−20 June 2013. pp. 1−6. https://doi.org/10.1109/PTC.2013.6652453

[69]

Souza MET, Freitas LCG. 2022. Grid-connected and seamless transition modes for microgrids: an overview of control methods, operation elements, and general requirements. IEEE Access 10:97802−34

doi: 10.1109/ACCESS.2022.3206362
[70]

Liu Z, Gao J, Yu H, Wang X. 2020. Operation mechanism and strategies for transactive electricity market with multi-microgrid in grid-connected mode. IEEE Access 8:79594−603

doi: 10.1109/ACCESS.2020.2990297
[71]

Tofani KM, Pramana PAA, Harsono BBSDA, Jintaka DR, H Mangunnkusumo KG. 2020. SCADA systems design to optimize and Automate microgrids systems in Indonesia. 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), Bandung, Indonesia, 23−24 September 2020. US: IEEE. pp. 187−92. https://doi.org/10.1109/ICT-PEP50916.2020.9249833

[72]

González I, Calderón AJ, Folgado FJ. 2022. IoT real time system for monitoring lithium-ion battery long-term operation in microgrids. Journal of Energy Storage 51:104596

doi: 10.1016/j.est.2022.104596
[73]

Razmi D, Lu T. 2022. A literature review of the control challenges of distributed energy resources based on microgrids (MGs): past, present and future. Energies 15:4676

doi: 10.3390/en15134676
[74]

Deng C, Wang Y, Wen C, Xu Y, Lin P. 2021. Distributed resilient control for energy storage systems in cyber–physical microgrids. IEEE Transactions on Industrial Informatics 17:1331−41

doi: 10.1109/TII.2020.2981549
[75]

Georgious R, Refaat R, Garcia J, Daoud AA. 2021. Review on energy storage systems in microgrids. Electronics 10:2134

doi: 10.3390/electronics10172134
[76]

Bouramdane AA. 2021. Scenarios of large-scale solar integration with wind in Morocco: impact of storage, cost, spatio-temporal complementarity and climate change. Thesis. Institut Polytechnique de Paris. https://theses.fr/2021IPPAX083

[77]

Jamal S, Pasupuleti J, Rahmat NA, Tan NML. 2022. Energy Management System for Grid-Connected Nanogrid during COVID-19. Energies 15(20):7689

doi: 10.3390/en15207689
[78]

Jamal S, Tan NML, Pasupuleti J. 2021. A review of energy management and power management systems for microgrid and nanogrid applications. Sustainability 13:10331

doi: 10.3390/su131810331
[79]

Syed D, Zainab A, Ghrayeb A, Refaat SS, Abu-Rub H, et al. 2020. Smart grid big data analytics: survey of technologies, techniques, and applications. IEEE Access 9:59564−85

doi: 10.1109/ACCESS.2020.3041178
[80]

Schneider Electric Blog. 2018. Decentralization defined & what it means for you. https://blog.se.com/energy-management-energy-efficiency/2018/04/04/decentralization-defined-and-what-it-means-for-you

[81]

Bhatta R, Shrestha R, Negri C, Schmitt K, Murshed M, et al. 2022. Feasibility of a real-world test microgrid facility to provide economic and resiliency benefits in extreme weather conditions. 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), New Orleans, LA, USA, 24-28 April 2022. US: IEEE. pp. 1−5. https://doi.org/10.1109/ISGT50606.2022.9817507

[82]

Wang Z, Wang J. 2017. Service restoration based on AMI and networked MGs under extreme weather events. IET Generation, Transmission & Distribution 11:401−8

doi: 10.1049/iet-gtd.2016.0864
[83]

Amirioun MH, Aminifar F, Lesani H. 2018. Towards proactive scheduling of microgrids against extreme floods. IEEE Transactions on Smart Grid 9:3900−2

doi: 10.1109/TSG.2017.2762906
[84]

Yang W, Sparrow SN, Ashtine M, Wallom DCH, Morstyn T. 2022. Resilient by design: preventing wildfires and blackouts with microgrids. Applied Energy 313:118793

doi: 10.1016/j.apenergy.2022.118793
[85]

Najafi A. Peiravi A, Anvari-Moghaddam A. 2020. Enhancing integrated power and water distribution networks seis mic resilience leveraging microgrids. Sustainability 12(6):2167

doi: 10.3390/su12062167
[86]

Hlatshwayo MC, Chowdhury S. 2018. Investigating induced overvoltage transients in microgrids and its components. 2018 IEEE PES/IAS PowerAfrica, Cape Town, South Africa, 28−29 June 2018. US: IEEE. pp. 378−83. https://doi.org/10.1109/PowerAfrica.2018.8520974

[87]

Jiménez-Estévez G, Navarro-Espinosa A, Palma-Behnke R, Lanuzza L, Velázquez N. 2017. Achieving resilience at distribution level: learning from isolated community microgrids. IEEE Power and Energy Magazine 15:64−73

doi: 10.1109/MPE.2017.2662328
[88]

Yanine F, Sanchez-Squella A, Barrueto A, Cordova FM, Sahoo SK, et al. 2018. When energy efficiency is not enough: Homeostaticity of energy systems and why electric utilities should care. 2018 7th International Conference on Computers Communications and Control (ICCCC), Oradea, Romania, 8-12 May 2018. US: IEEE. pp. 142−49. https://doi.org/10.1109/ICCCC.2018.8390451

[89]

Stiegler C, Lund M Christensen TR, Mastepanov M, Lindroth A. 2016. Effects of interannual variability in snow accumulation on energy partitioning and surface energy exchange in a high-arctic tundra ecosystem. The Cryosphere Discussions 00:1−32

doi: 10.5194/tc-2016-5
[90]

Pörtner HO, Roberts DC, Adams H, Adelekan I, Adler C, et al. 2022. Technical Summary. Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, USA. pp. 37–118. https://doi.org/10.1017/9781009325844.002, www.ipcc.ch/report/ar6/wg2/downloads/report/IPCC_AR6_WGII_TechnicalSummary.pdf (Accessed on August 16th 2023)

[91]

Arias PA, Bellouin N, Coppola E, Jones RG, Krinner G. 2021. Technical Summary. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Cambridge University Press, Cambridge, United Kingdom and New York, USA. pp. 33−144. https://doi.org/10.1017/9781009157896.002, www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_TS.pdf (Accessed on August 16th 2023)

[92]

Schweikert AE, Deinert MR. 2021. Vulnerability and resilience of power systems infrastructure to natural hazards and climate change. WIREs Climate Change 12:e724

doi: 10.1002/wcc.724
[93]

Showstack R. 1998. Real-time monitoring and warning for natural hazards can provide real-time benefits. Eos, Transactions American Geophysical Union 79:329−33

doi: 10.1029/98eo00247
[94]

Saltos-Rodríguez M, Aguirre-Velasco M, Velásquez-Lozano A, Ortiz-Villalba D, Villamarín-Jácome A. 2021. Distributed generation for resilience enhancement on power distribution system against lahars occurrence after a volcanic eruption. 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), Lima, Peru, 15−17 September 2021. US: IEEE. pp. 1−5. https://doi.org/10.1109/ISGTLatinAmerica52371.2021.9543008

[95]

Johnston KA, Taylor M, Ryan B. 2022. Engaging communities to prepare for natural hazards: a conceptual model. Natural Hazards 112:2831−51

doi: 10.1007/s11069-022-05290-2
[96]

Clark-Ginsberg A, Rueda IA, Monken J, Liu J, Chen H. 2020. Maintaining critical infrastructure resilience to natural hazards during the COVID-19 pandemic: hurricane preparations by US energy companies. Journal of Infrastructure Preservation and Resilience 1:10

doi: 10.1186/s43065-020-00010-1
[97]

Guikema S. 2020. Artificial intelligence for natural hazards risk analysis: potential, challenges, and research needs. Risk Analysis 40:1117−23

doi: 10.1111/risa.13476
[98]

Pradhan B. 2018. Artificial intelligence and spatial modelling in natural hazards and environmental applications. In CAJG 2018: Advances in Remote Sensing and Geo Informatics Applications. Cham: Springer. pp. 11−13. https://doi.org/10.1007/978-3-030-01440-7_3

[99]

Hemingway R, Gunawan O. 2018. The Natural Hazards Partnership: a public-sector collaboration across the UK for natural hazard disaster risk reduction. International Journal of Disaster Risk Reduction 27:499−511

doi: 10.1016/j.ijdrr.2017.11.014
[100]

Patel P. 2020. Building climate-resilient cities. Chemical & Engineering News. https://api.semanticscholar.org/CorpusID:212837896

[101]

Budimir V, Lanter H, Schultes S. 2022. GUARD - smart flexible protection systems against natural hazards. 7th International Conference on Road and Rail Infrastructure, Pula, Croatiapp, 11−13 May 2022. Republic of Croatia: University of Zagreb Faculty of Civil Engineering. pp. 1−10. https://doi.org/10.5592/co/cetra.2022.1493

[102]

Komendantova N, Leroy C, Battaglini A. 2015. Protection of electricity infrastructure from natural hazards: from multi-risk assessment to multi-risk governance. NATO Science for Peace and Security Series - D: Information and Communication Security 43:57−71

[103]

Fernández P, Ceacero-Moreno M. 2021. Urban sustainability and natural hazards management; designs using simulations. Sustainability 13:649

doi: 10.3390/su13020649
[104]

Lo AY, Cheung LTO, Lee AKY, Xu B. 2016. Confidence and trust in public institution natural hazards management: case studies in urban and rural China. The Professional Geographer 68:475−84

doi: 10.1080/00330124.2015.1106325
[105]

Bouramdane AA. 2023. Lieux les plus sensibles au changement climatique nécessitant des mesures d'atténuation et d'adaptation. énergie/mines & carrières magazine. https://energiemines.ma/lieux-les-plus-sensibles-au-changement-climatique-necessitant-des-mesures-dattenuation-et-dadaptation/

[106]

Bouramdane AA. 2023. Quelle relation entre Agriculture et Changement Climatique? énergie/mines & carriers magazine. https://energiemines.ma/quelle-relation-entre-agriculture-et-changement-climatique/

[107]

Bouramdane AA. 2023. olutions Pour Réduire la Pression sur l'Eau. énergie/mines & carriers magazine. https://energiemines.ma/solutions-pour-rerduire-pression-eau/

[108]

Bouramdane AA. 2022. Pourquoi l'Atténuation et l’Adaptation aux Changements Climatiques sont Complémentaires? énergie/mines & carriers magazine. https://energiemines.ma/pourquoi-lattenuation-et-ladaptation-aux-changements-climatiques-sont-complementaires/