[1] |
Yeretzian C. 2017. Coffee. In Springer Handbook of Odor, ed. Buettner A. Cham: Springer. pp. 21−22. https://doi.org/10.1007/978-3-319-26932-0_6 |
[2] |
United States Department of Agriculture – Foreign Agricultural Services. 2022. Coffee: World Markets and Trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/m900nt40f/9c67xz908/kp78ht90h/coffee.pdf |
[3] |
Department of Agriculture - High Value Crops Development Program. 2022. Philippine Coffee Industry Roadmap 2021−2025. Department of Agriculture - Bureau of Agricultural Research through UPLB Foundation, Inc. in collaboration with the Philippine Council for Agriculture and Fisheries. 150 pp. www.pcaf.da.gov.ph/wp-content/uploads/2022/06/Philippine-Coffee-Industry-Roadmap-2021-2025.pdf |
[4] |
Martinez SJ, Bressani APP, Dias DR, Simão JBP, Schwan RF. 2019. Effect of bacterial and yeast starters on the formation of volatile and organic acid compounds in coffee beans and selection of flavors markers precursors during wet fermentation. Frontiers in Microbiology 10:1287 doi: 10.3389/fmicb.2019.01287 |
[5] |
Haile M, Kang WH. 2019.The harvest and post-harvest management practices’ impact on coffee quality. In Coffee: Production and Research, ed. Castanheira DT. IntechOpen. pp. 59−76. https://doi.org/10.5772/intechopen.89224 |
[6] |
Vinícius de Melo Pereira G, Soccol VT, Brar SK, Neto E, Soccol CR. 2017. Microbial ecology and starter culture technology in coffee processing. Critical Reviews in Food Science and Nutrition 57(13):2775−88 doi: 10.1080/10408398.2015.1067759 |
[7] |
Haile M, Kang WH. 2019. The role of microbes in coffee fermentation and their impact on coffee quality. Journal of Food Quality 2019:4836709 doi: 10.1155/2019/4836709 |
[8] |
Ribeiro LS, da Cruz Pedrozo Miguel MG, Martinez SJ, Bressani APP, Evangelista SR, et al. 2020. The use of mesophilic and lactic acid bacteria strains as starter cultures for improvement of coffee beans wet fermentation. World Journal of Microbiology and Biotechnology 36:186 doi: 10.1007/s11274-020-02963-7 |
[9] |
Oumer OJ, Abate D. 2018. Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International 2018:2961767 doi: 10.1155/2018/2961767 |
[10] |
Reiner K. 2012. Carbohydrate fermentation protocol. Energy 11:12 |
[11] |
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28(10):2731−39 doi: 10.1093/molbev/msr121 |
[12] |
Senthilraj R, Prasad GS, Janakiraman K. 2016. Sequence-based identification of microbial contaminants in non-parenteral products. Brazilian Journal of Pharmaceutical Sciences 52:329−36 doi: 10.1590/S1984-82502016000200011 |
[13] |
Behera SS, Ray RC, Das U, Panda SK, Saranraj P. 2019. Microorganisms in fermentation. In Essentials in Fermentation Technology. Learning Materials in Biosciences, ed. Berenjian A. Cham: Springer. pp. 1−39. https://doi.org/10.1007/978-3-030-16230-6_1 |
[14] |
Pregolini VB, de Melo Pereira GV, da Silva Vale A, de Carvalho Neto DP, Soccol CR. 2021. Influence of environmental microbiota on the activity and metabolism of starter cultures used in coffee beans fermentation. Fermentation 7(4):278 doi: 10.3390/fermentation7040278 |
[15] |
Zhang SJ, De Bruyn F, Pothakos V, Torres J, Falconi C, et al. 2019. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of Coffea arabica. Applied and Environmental Microbiology 85(6):e02635−18 doi: 10.1128/AEM.02635-18 |
[16] |
Elhalis H, Cox J, Frank D, Zhao J. 2021. Microbiological and chemical characteristics of wet coffee fermentation inoculated with Hansinaspora uvarum and Pichia kudriavzevii and their impact on coffee sensory quality. Frontiers in Microbiology 12:713969 doi: 10.3389/fmicb.2021.713969 |
[17] |
Haile S, Masi C, Tafesse M. 2022. Isolation and characterization of pectinase-producing bacteria (Serratia marcescens) from avocado peel waste for juice clarification. BMC Microbiology 22(1):145 doi: 10.1186/s12866-022-02536-8 |
[18] |
Gopinath SCB, Anbu P, Arshad MKM, Lakshmipriya T, Voon CH, et al. 2017. Biotechnological processes in microbial amylase production. BioMed Research International 2017:1272193 doi: 10.1155/2017/1272193 |
[19] |
Jayasekara S, Ratnayake R. 2019. Microbial cellulases: an overview and applications. In Cellulose, eds. Pascual AR, Martin ME. IntechOpen. 22:92. https://doi.org/10.5772/intechopen.84531 |
[20] |
Pant G, Prakash A, Pavani JVP, Bera S, Deviram GVNS, et al. 2015. Production, optimization and partial purification of protease from Bacillus subtilis. Journal of Taibah University for Science 9(1):50−55 doi: 10.1016/j.jtusci.2014.04.010 |
[21] |
Peñuela-Martínez AE, Zapata-Zapata AD, Durango-Restrepo DL. 2018. Performance of different fermentation methods and the effect on coffee quality (Coffea arabica L.). Coffee Science 13:465−76 doi: 10.25186/cs.v13i4.1486 |
[22] |
Pérez-Díaz IM, Altuntas EG, Juneja VK. 2017. Microbial Fermentation in Food Preservation. In Microbial Control and Food Preservation. Food Microbiology and Food Safety, eds. Juneja V, Dwivedi H, Sofos J. New York: Springer. pp. 281−98. https://doi.org/10.1007/978-1-4939-7556-3_13 |
[23] |
Guan N, Liu L. 2020. Microbial response to acid stress: mechanisms and applications. Applied Microbiology and Biotechnology 104:51−65 doi: 10.1007/s00253-019-10226-1 |
[24] |
Clarridge JE 3rd. 2004. Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical Microbiology Reviews 17(4):840−62 doi: 10.1128/CMR.17.4.840-862.2004 |
[25] |
Kim M, Chun J. 2014. 16S rRNA gene-based identification of bacteria and archaea using the EzTaxon server. In Methods in microbiology. New Approaches to Prokaryotic Systematics, eds. Goodfellow M, Sutcliffe I, Chun J. vol. 41. UK: Academic Press. pp. 61−74. https://doi.org/10.1016/bs.mim.2014.08.001 |
[26] |
Avallone S, Guyot B, Brillouet JM, Olguin E, Guiraud JP. 2001. Microbiological and biochemical study of coffee fermentation. Current Microbiology 42:252−56 doi: 10.1007/s002840110213 |
[27] |
Duong B, Marraccini P, Maeght JL, Vaast P, Lebrun M, Duponnois R. 2020. Coffee microbiota and its potential use in sustainable crop management. A review. Frontiers in Sustainable Food Systems 4:607935 doi: 10.3389/fsufs.2020.607935 |
[28] |
Reddy MPC, Saritha KV. 2016. Effects of the culture media optimization on pectinase production by Enterobacter sp. PSTB-1. 3 Biotech 6:207 doi: 10.1007/s13205-016-0502-y |
[29] |
Roy K, Dey S, Uddin MK, Barua R, Hossain MT. 2018. Extracellular pectinase from a novel bacterium Chryseobacterium indologenes strain SD and its application in fruit juice clarification. Enzyme Research 2018:3859752 doi: 10.1155/2018/3859752 |
[30] |
Elhalis H, Cox J, Zhao J. 2023. Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Applied Food Research 3(1):100253 doi: 10.1016/j.afres.2022.100253 |
[31] |
de Oliveira Junqueira AC, de Melo Pereira GV, Coral Medina JD, Alvear MCR, Rosero R, et al. 2019. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports 9:8794 doi: 10.1038/s41598-019-45002-8 |