[1] |
Zhang Y, Lei J, Zhao M, Zhang Y, Wang G, et al. 2019. Fruit scientific research in New China in the past 70 years: strawberry. Journal of Fruit Science 36:1441−52 doi: 10.13925/j.cnki.gsxb.Z18 |
[2] |
Qiao H, Zhang H, Wang Z, Shen Y. 2021. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid. Journal of Integrative Plant Biology 63:553−69 doi: 10.1111/jipb.13065 |
[3] |
Chen Z. 2015. Development of a preservation technique for strawberry fruit (Fragaria × ananassa Duch.) by using aqueous chlorine dioxide. Journal of Microbiology, Biotechnology and Food Sciences 5:45−51 doi: 10.15414/jmbfs.2015.5.1.45-51 |
[4] |
Pang Q, Chen X, Lv J, Li T, Fang J, et al. 2020. Triacontanol promotes the fruit development and retards fruit senescence in strawberry: a transcriptome analysis. Plants 9:488 doi: 10.3390/plants9040488 |
[5] |
Almenar E, Del Valle V, Catala R, Gavara R. 2007. Active package for wild strawberry fruit (Fragaria vesca L.). Journal of Agricultural and Food Chemistry 55:2240−45 doi: 10.1021/jf062809m |
[6] |
Chiabrando V, Garavaglia L, Giacalone G. 2019. The postharvest quality of fresh sweet cherries and strawberries with an active packaging system. Foods 8:335 doi: 10.3390/foods8080335 |
[7] |
Hu L, Hu S, Wu J, Li Y, Zheng J, et al. 2012. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits. Journal of Agricultural and Food Chemistry 60:8684−93 doi: 10.1021/jf300728h |
[8] |
Del Olmo I, Romero I, Alvarez MD, Tarradas R, Sanchez-Ballesta MT, et al. 2022. Transcriptomic analysis of CO2-treated strawberries (Fragaria vesca) with enhanced resistance to softening and oxidative stress at consumption. Frontiers in Plant Science 13:983976 doi: 10.3389/fpls.2022.983976 |
[9] |
Chen J, Mao L, Lu W, Ying T, Luo Z. 2016. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid. Planta 243:183−97 doi: 10.1007/s00425-015-2402-5 |
[10] |
Aghdam MS, Alikhani-Koupaei M. 2021. Exogenous phytosulfokine α (PSKα) applying delays senescence and relief decay in strawberry fruits during cold storage by sufficient intracellular ATP and NADPH availability. Food Chemistry 336:127685 doi: 10.1016/j.foodchem.2020.127685 |
[11] |
Xu Y, Charles MT, Luo Z, Mimee B, Tong Z, et al. 2018. Preharvest ultraviolet C treatment affected senescence of stored strawberry fruit with a potential role of microRNAs in the activation of the antioxidant system. Journal of Agricultural and Food Chemistry 66:12188−97 doi: 10.1021/acs.jafc.8b04074 |
[12] |
Leshem YY, Pinchasov Y. 2000. Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.). Journal of Experimental Botany 51:1471−73 doi: 10.1093/jexbot/51.349.1471 |
[13] |
Foyer CH, Noctor G. 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. The Plant Cell 17:1866−75 doi: 10.1105/tpc.105.033589 |
[14] |
Xu X, Yin L, Ying Q, Song H, Xue D, et al. 2013. High-throughput sequencing and degradome analysis identify miRNAs and their targets involved in fruit senescence of Fragaria ananassa. PLoS One 8:e70959 doi: 10.1371/journal.pone.0070959 |
[15] |
Tosetti R, Elmi F, Pradas I, Cools K, Terry LA. 2020. Continuous exposure to ethylene differentially affects senescence in receptacle and achene tissues in strawberry fruit. Frontiers in Plant Science 11:174 doi: 10.3389/fpls.2020.00174 |
[16] |
Yu Y, Dou G, Sun X, Chen L, Zheng Y, et al. 2021. Transcriptome and biochemical analysis jointly reveal the effects of Bacillus cereus AR156 on postharvest strawberry gray mold and fruit quality. Frontiers in Plant Science 12:700446 doi: 10.3389/fpls.2021.700446 |
[17] |
Vaezi S, Asghari M, Farokhzad A, Soleimani Aghdam M, Mahna N. 2022. Exogenous methyl jasmonate enhances phytochemicals and delays senescence in harvested strawberries by modulating GABA shunt pathway. Food Chemistry 393:133418 doi: 10.1016/j.foodchem.2022.133418 |
[18] |
Bai Q, Huang Y, Shen Y. 2020. The physiological and molecular mechanism of abscisic acid in regulation of fleshy fruit ripening. Frontiers in Plant Science 11:619953 doi: 10.3389/fpls.2020.619953 |
[19] |
Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genetics 43:109−16 doi: 10.1038/ng.740 |
[20] |
Castillejo C, de la Fuente JI, Iannetta P, Botella MÁ, Valpuesta V. 2004. Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. Journal of Experimental Botany 55:909−18 doi: 10.1093/jxb/erh102 |
[21] |
Carrasco-Orellana C, Stappung Y, Mendez-Yañez A, Allan AC, Espley RV, et al. 2018. Characterization of a ripening-related transcription factor FcNAC1 from Fragaria chiloensis fruit. Scientific Reports 8:10524 doi: 10.1038/s41598-018-28226-y |
[22] |
Min K, Yi G, Lee JG, Kim HS, Hong Y, et al. 2020. Comparative transcriptome and metabolome analyses of two strawberry cultivars with different storability. PLoS One 15:e0242556 doi: 10.1371/journal.pone.0242556 |
[23] |
Song J, Forney CF. 2008. Flavour volatile production and regulation in fruit. Canadian Journal of Plant Science 88:537−50 doi: 10.4141/CJPS07170 |
[24] |
Collu G, Farci D, Esposito F, Pintus F, Kirkpatrick J, et al. 2017. New insights into the operative network of FaEO, an enone oxidoreductase from Fragaria × ananassa Duch. Plant Molecular Biology 94:125−36 doi: 10.1007/s11103-017-0597-5 |
[25] |
Li L, Luo Z, Huang X, Zhang L, Zhao P, et al. 2015. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage. Journal of Proteomics 120:44−57 doi: 10.1016/j.jprot.2015.02.016 |
[26] |
Jia H, Chai Y, Li C, Lu D, Luo J, et al. 2011. Abscisic acid plays an important role in the regulation of strawberry fruit ripening. Plant Physiology 157:188−99 doi: 10.1104/pp.111.177311 |
[27] |
Cheng S, Shao X, Guo A, Song Y. 2011. Effects of tea tree oil fumigation on disease and quality of postharvest strawberry fruits. Transactions of the Chinese Society of Agricultural Engineering 27:383−88 doi: 10.3969/j.issn.1002-6819.2011.04.067 |
[28] |
Zhang L, Liu D, Liao L, Wang C, An K, et al. 2018. Effects of vacuum freezing combined with hot air drying on the quality of strawberry. Modern Food Science and Technology 34:188−97 doi: 10.13982/j.mfst.1673-9078.2018.04.029 |
[29] |
Wang F, Zhang X, Yang Q, Zhao Q. 2019. Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chemistry 301:125311 doi: 10.1016/j.foodchem.2019.125311 |
[30] |
Quek SY, Chok NK, Swedlund P. 2007. The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification 46:386−92 doi: 10.1016/j.cep.2006.06.020 |
[31] |
Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, et al. 2004. Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Molecular Breeding 14:21−34 doi: 10.1023/B:MOLB.0000037992.03731.a5 |
[32] |
Lu Z, Zou Z, Lu J, Wang R. 2011. Research progress on determination of phytohormones. Crop Research 25:531−34 doi: 10.3969/j.issn.1001-5280.2011.05.28 |
[33] |
Keutgen AJ, Pawelzik E. 2008. Contribution of amino acids to strawberry fruit quality and their relevance as stress indicators under NaCl salinity. Food Chemistry 111:642−47 doi: 10.1016/j.foodchem.2008.04.032 |
[34] |
He Z, Li F, Zhang S, Bai R, Zhang H. 2016. Effect of bagging on free fatty acid and free amino acid content in'Kuerle Xiangli'. International Journal of Fruit Science 33:804−13 doi: 10.13925/j.cnki.gsxb.20150510 |
[35] |
Zhao N, Guo X, Wang L. 2021. Analysis of fruit aroma components of 6 strawberry varieties. Journal of Agricultural University of Hebei 44:57−66 doi: 10.13320/j.cnki.jauh.2021.0008 |
[36] |
Maldiney R, Leroux B, Sabbagh I, Sotta B, Sossountzov L, et al. 1986. A biotin-avidin-based enzyme immunoassay to quantify three phytohormones: auxin, abscisic acid and Zeatin-riboside. Journal of Immunological Methods 90:151−58 doi: 10.1016/0022-1759(86)90070-0 |
[37] |
Zou X, Liu L, Hu Z, Wang X, Zhu Y, et al. 2021. Salt-induced inhibition of rice seminal root growth is mediated by ethylene-jasmonate interaction. Journal of Experimental Botany 72:5656−72 doi: 10.1093/jxb/erab206 |
[38] |
Wang Q, Zhao C, Zhang M, Li Y, Shen Y, et al. 2017. Transcriptome analysis around the onset of strawberry fruit ripening uncovers an important role of oxidative phosphorylation in ripening. Scientific Reports 7:41477 doi: 10.1038/srep41477 |
[39] |
Mo A, Xu T, Bai Q, Shen Y, Gao F, et al. 2020. FaPAO5 regulates Spm/Spd levels as a signaling during strawberry fruit ripening. Plant Direct 4:e00217 doi: 10.1002/pld3.217 |
[40] |
Edger PP, Poorten TJ, VanBuren R, Hardigan MA, Colle M, et al. 2019. Origin and evolution of the octoploid strawberry genome. Nature Genetics 51:541−47 doi: 10.1038/s41588-019-0356-4 |
[41] |
Chen Y, Li D, Zhang X, Ma Q, Xu Y, et al. 2023. Azacytidine-induced hypomethylation delays senescence and coloration in harvested strawberries by stimulating antioxidant enzymes and modulating abscisate metabolism to minimize anthocyanin overproduction. Food Chemistry 407:135189 doi: 10.1016/j.foodchem.2022.135189 |
[42] |
Li B, Grierson D, Shi Y, Chen K. 2022. Roles of abscisic acid in regulating ripening and quality of strawberry, a model non-climacteric fruit. Horticulture Research 9:uhac089 doi: 10.1093/hr/uhac089 |
[43] |
Zahedipour-Sheshglani P, Asghari M. 2020. Impact of foliar spray with 24-epibrassinolide on yield, quality, ripening physiology and productivity of the strawberry. Scientia Horticulturae 268:109376 doi: 10.1016/j.scienta.2020.109376 |
[44] |
Neves C, Ribeiro B, Amaro R, Expósito J, Grimplet J, et al. 2023. Network of GRAS transcription factors in plant development, fruit ripening and stress responses. Horticulture Research 10:uhad220 doi: 10.1093/hr/uhad220 |
[45] |
Wang Z, Asghari M, Zahedipour-Sheshglani P, Mohammadzadeh K. 2024. Impact of 24-epibrassinoliode and methyl jasmonate on quality of Red Delicious apples. Journal of the Science of Food and Agriculture 104:1621−29 doi: 10.1002/jsfa.13047 |
[46] |
Gapper NE, Giovannoni JJ, Watkins CB. 2014. Understanding development and ripening of fruit crops in an 'omics' era. Horticulture Research 1:14034 doi: 10.1038/hortres.2014.34 |