[1]

Pearcy RW, Björkman O, Caldwell MM, Keeley JE, Monson RK, et al. 1987. Carbon gain by plants in natural environments: carbon assimilation analysis provides an understanding of how plants function in diverse environments. BioScience 37:21−29

doi: 10.2307/1310174
[2]

Conn S, Gilliham M. 2010. Comparative physiology of elemental distributions in plants. Annals of Botany 105:1081−102

doi: 10.1093/aob/mcq027
[3]

Eckstein A, Zięba P, Gabryś H. 2012. Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. Journal of Plant Growth Regulation 31:90−101

doi: 10.1007/s00344-011-9222-z
[4]

Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. 2023. Fruit photosynthesis: more to know about where, how and why. Plants 12:2393

doi: 10.3390/plants12132393
[5]

Goldstein G, Santiago LS. 2016. Tropical tree physiology: adaptations and responses in a changing environment, vol 6. Cham: Springer. https://doi.org/10.1007/978-3-319-27422-5

[6]

Maxwell K, Johnson GN. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51:659−68

doi: 10.1093/jxb/51.345.659
[7]

Vialet-Chabrand S, Matthews JSA, Simkin AJ, Raines CA, Lawson T. 2017. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiology 173:2163−79

doi: 10.1104/pp.16.01767
[8]

Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, et al. 2020. Photosynthesis in a changing global climate: scaling up and scaling down in crops. Frontiers in Plant Science 11:882

doi: 10.3389/fpls.2020.00882
[9]

Mohr H, Schopfer P. 1995. Plant physiology. Heidelberg: Springer Berlin. 629 pp. https://doi.org/10.1007/978-3-642-97570-7

[10]

Martins T, Barros AN, Rosa E, Antunes L. 2023. Enhancing health benefits through chlorophylls and chlorophyll-rich agro-food: a comprehensive review. Molecules 28:5344

doi: 10.3390/molecules28145344
[11]

Yang J, Song J, Jeong BR. 2022. Lighting from top and side enhances photosynthesis and plant performance by improving light usage efficiency. International Journal of Molecular Sciences 23:2448

doi: 10.3390/ijms23052448
[12]

Shuang S, Zhang J, Cun Z, Wu H, Hong J, et al. 2022. A comparison of photoprotective mechanism in different light-demanding plants under dynamic light conditions. Frontiers in Plant Science 13:819843

doi: 10.3389/fpls.2022.819843
[13]

Kalisz A, Kornaś A, Skoczowski A, Oliwa J, Jurkow R, et al. 2023. Leaf chlorophyll fluorescence and reflectance of oakleaf lettuce exposed to metal and metal(oid) oxide nanoparticles. BMC Plant Biology 23:329

doi: 10.1186/s12870-023-04305-9
[14]

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983−98

doi: 10.1093/jxb/ert208
[15]

Genty B, Briantais JM, Baker NR. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990:87−92

doi: 10.1016/s0304-4165(89)80016-9
[16]

Kuhlgert S, Austic G, Zegarac R, Osei-Bonsu I, Hoh D, et al. 2016. MultispeQ Beta: a tool for large-scale plant phenotyping connected to the open PhotosynQ network. Royal Society Open Science 3:160592

doi: 10.1098/rsos.160592
[17]

Tietz S, Hall CC, Cruz JA, Kramer DM. 2017. NPQ(T): a chlorophyll fluorescence parameter for rapid estimation and imaging of non-photochemical quenching of excitons in photosystem-II-associated antenna complexes. Plant, Cell & Environment 40:1243−55

doi: 10.1111/pce.12924
[18]

Demmig-Adams B, Garab G, Adams W, III, Govindjee. 2014. Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Dordrecht: Springer. 649 pp. https://doi.org/10.1007/978-94-017-9032-1

[19]

Butler WL. 1978. Energy distribution in the photochemical apparatus of photosynthesis. Annual Review of Plant Physiology 29:345−78

doi: 10.1146/annurev.pp.29.060178.002021
[20]

Genty B, Goulas Y, Dimon P, Peltier G, Briantais JM, et al. 1992. Modulation of efficiency of primary conversion in leaves, mechanisms involved at PS 2. In Research in Photosynthesis, ed. Murata N. Vol. IV. Dordrecht: Kluwer Academic Publishers. pp. 603–10.

[21]

Hiraoka Y. 2020. Application of high-density SNP genotyping array in citrus germplasm characterization and genetic dissection of traits. Theses. University of California, Riverside, Riverside, CA, USA.

[22]

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44:821−24

doi: 10.1038/ng.2310
[23]

Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841−42

doi: 10.1093/bioinformatics/btq033
[24]

Liu H, Wang X, Liu S, Huang Y, Guo Y, et al. 2022. Citrus Pan-Genome to Breeding Database (CPBD): a comprehensive genome database for Citrus breeding. Molecular Plant 15:1503−5

doi: 10.1016/j.molp.2022.08.006
[25]

Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, et al. 2014. Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nature Biotechnology 32:656−62

doi: 10.1038/nbt.2906
[26]

Acosta-Rangel AM, Li R, Celis N, Suarez DL, Santiago LS, et al. 2019. The physiological response of 'Hass' avocado to salinity as influenced by rootstock. Scientia Horticulturae 256:108629

doi: 10.1016/j.scienta.2019.108629
[27]

Santiago LS, Kitajima K, Wright SJ, Mulkey SS. 2004. Coordinated changes in photosynthesis, water relations and leaf nutritional traits of canopy trees along a precipitation gradient in lowland tropical forest. Oecologia 139:495−502

doi: 10.1007/s00442-004-1542-2
[28]

Li J, Yang J, Fei P, Song J, Li D, et al. 2009. Responses of rice leaf thickness, SPAD readings and chlorophyll a/b ratios to different nitrogen supply rates in paddy field. Field Crops Research 114:426−32

doi: 10.1016/j.fcr.2009.09.009
[29]

Liu S, Xiong Z, Zhang Z, Wei Y, Xiong D, et al. 2023. Exploration of chlorophyll fluorescence characteristics gene regulatory in rice (Oryza sativa L.): a genome-wide association study. Frontiers in Plant Science 14:1234866

doi: 10.3389/fpls.2023.1234866
[30]

Theeuwen TPJM, Logie LL, Harbinson J, Aarts MGM. 2022. Genetics as a key to improving crop photosynthesis. Journal of Experimental Botany 73:3122−37

doi: 10.1093/jxb/erac076
[31]

Tsai HY, Janss LL, Andersen JR, Orabi J, Jensen JD, et al. 2020. Author Correction: Genomic prediction and GWAS of yield, quality and disease-related traits in spring barley and winter wheat. Scientific Reports 10:8205

doi: 10.1038/s41598-020-63862-3
[32]

Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, et al. 2017. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnology Journal 15:390−401

doi: 10.1111/pbi.12635
[33]

Wang L, Yang Y, Zhang S, Che Z, Yuan W, et al. 2020. GWAS reveals two novel loci for photosynthesis-related traits in soybean. Molecular Genetics and Genomics 295:705−16

doi: 10.1007/s00438-020-01661-1
[34]

Arab MM, Brown PJ, Abdollahi-Arpanahi R, Sohrabi SS, Askari H, et al. 2022. Genome-wide association analysis and pathway enrichment provide insights into the genetic basis of photosynthetic responses to drought stress in Persian walnut. Horticulture Research 9:uhac124

doi: 10.1093/hr/uhac124