[1]

Li Y, Ren K, Hu M, He X, Gu K, et al. 2021. Cold stress in the harvest period: effects on tobacco leaf quality and curing characteristics. BMC Plant Biology 21:131

doi: 10.1186/s12870-021-02895-w
[2]

Zhang W, Huang W, Yang QY, Zhang SB, Hu H. 2013. Effect of growth temperature on the electron flow for photorespiration in leaves of tobacco grown in the field. Physiologia Plantarum 149:141−50

doi: 10.1111/ppl.12044
[3]

Ashraf M, Mao Q, Hong J, Shi L, Ran X, et al. 2021. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis. Plant, Cell & Environment 44:3616−27

doi: 10.1111/pce.14138
[4]

Wang X, Yu C, Liu Y, Yang L, Li Y, et al. 2019. GmFAD3A, a ω-3 fatty acid desaturase gene enhances cold tolerance and seed germination rate under low temperature in rice. International Journal of Molecular Sciences 20:3796

doi: 10.3390/ijms20153796
[5]

Li C, Dong S, Beckles DM, Miao H, Sun J, et al. 2022. The qLTG1.1 candidate gene CsGAI regulates low temperature seed germination in cucumber. Theoretical and Applied Genetics 135:2593−607

doi: 10.1007/s00122-022-04097-w
[6]

Liu Y, Wang L, Jiang S, Pan J, Cai G, et al. 2014. Group 5 LEA protein, ZmLEA5C, enhance tolerance to osmotic and low temperature stresses in transgenic tobacco and yeast. Plant Physiology and Biochemistry 84:22−31

doi: 10.1016/j.plaphy.2014.08.016
[7]

Zhang Z, Wu J, Lin W, Wang J, Yan H, et al. 2014. Subdomain II of α-isopropylmalate synthase is essential for activity: inferring a mechanism of feedback inhibition. Journal of Biological Chemistry 289:27966−78

doi: 10.1074/jbc.M114.559716
[8]

He Y, Cheng J, He Y, Yang B, Cheng Y, et al. 2019. Influence of isopropylmalate synthase OsIPMS1 on seed vigour associated with amino acid and energy metabolism in rice. Plant Biotechnology Journal 17:322−37

doi: 10.1111/pbi.12979
[9]

Niu Y, Wang C, Suo W, Wang G, Zhao J, et al. 2023. Isopropylmalate synthase NtIPMS as a potential molecular marker for seed vigor in tobacco. Plant Biotechnology 40:43−49

doi: 10.5511/plantbiotechnology.23.0118a
[10]

Arc E, Chibani K, Grappin P, Jullien M, Godin B, et al. 2012. Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release. Journal of Proteome Research 11:5418−32

doi: 10.1021/pr3006815
[11]

Jiang H, Shi Y, Liu J, Li Z, Fu D, et al. 2022. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nature Plants 8:1176−90

doi: 10.1038/s41477-022-01254-3
[12]

Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9:490−98

doi: 10.1016/j.tplants.2004.08.009
[13]

Bailly C, El-Maarouf-Bouteau H, Corbineau F. 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. Comptes Rendus Biologies 331:806−14

doi: 10.1016/j.crvi.2008.07.022
[14]

Hiei Y, Ohta S, Komari T, Kumashiro T. 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Journal 6:271−82

doi: 10.1046/j.1365-313X.1994.6020271.x
[15]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[16]

He Y, Yang B, He Y, Zhan C, Cheng Y, et al. 2019. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. The Plant Journal 97:1089−104

doi: 10.1111/tpj.14181
[17]

Liu J, Zhou J, Xing D. 2012. Phosphatidylinositol 3-kinase plays a vital role in regulation of rice seed vigor via altering NADPH oxidase activity. PLoS ONE 7:e33817

doi: 10.1371/journal.pone.0033817
[18]

Hu X, Wang W, Li C, Zhang J, Lin F, et al. 2008. Cross-talks between Ca2+/CaM and H2O2 in abscisic acid-induced antioxidant defense in leaves of maize plants exposed to water stress. Plant Growth Regulation 55:183−98

doi: 10.1007/s10725-008-9272-9
[19]

Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C, et al. 2008. Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiology 148:620−41

doi: 10.1104/pp.108.123141
[20]

Wu X, Jia Q, Ji S, Gong B, Li J, et al. 2020. Gamma-aminobutyric acid (GABA) alleviates salt damage in tomato by modulating Na+ uptake the GAD gene amino acid synthesis and reactive oxygen species metabolism. BMC Plant Biology 20:465

doi: 10.1186/s12870-020-02669-w
[21]

Wang Z, Wang F, Zhou R, Wang J, Zhang H. 2011. Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica 181:405−13

doi: 10.1007/s10681-011-0469-z
[22]

Biju S, Fuentes S, Gupta D. 2017. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes hydrolytic enzymes and antioxidant defense system. Plant Physiology and Biochemistry 119:250−64

doi: 10.1016/j.plaphy.2017.09.001
[23]

Ventura L, Donà M, Macovei A, Carbonera D, Buttafava A, et al. 2012. Understanding the molecular pathways associated with seed vigor. Plant Physiology and Biochemistry 60:196−206

doi: 10.1016/j.plaphy.2012.07.031
[24]

Li WY, Chen BX, Chen ZJ, Gao YT, Chen Z, et al. 2017. Reactive oxygen species generated by NADPH oxidases promote radicle protrusion and root elongation during rice seed germination. International Journal of Molecular Sciences 18:110

doi: 10.3390/ijms18010110
[25]

Jeevan Kumar SP, Rajendra Prasad S, Banerjee R, Thammineni C. 2015. Seed birth to death: dual functions of reactive oxygen species in seed physiology. Annals of Botany 116:663−68

doi: 10.1093/aob/mcv098
[26]

Zu X, Luo L, Wang Z, Gong J, Yang C, et al. 2023. A mitochondrial pentatricopeptide repeat protein enhances cold tolerance by modulating mitochondrial superoxide in rice. Nature Communications 14:6789

doi: 10.1038/s41467-023-42269-4