[1]

Tsukaya H. 2005. Leaf shape: genetic controls and environmental factors. The International Journal of Developmental Biology 49:547−55

doi: 10.1387/ijdb.041921ht
[2]

Tsukaya H. 2013. Leaf development. The Arabidopsis Book 2013:e0163

doi: 10.1199/tab.0163
[3]

Li L, Jin Z, Huang R, Zhou J, Song F, et al. 2023. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. Plant, Cell & Environment 46:150−70

doi: 10.1111/pce.14471
[4]

Chhetri HB, Macaya-Sanz D, Kainer D, Biswal AK, Evans LM, et al. 2019. Multitrait genome-wide association analysis of Populus trichocarpa identifies key polymorphisms controlling morphological and physiological traits. New Phytologist 223:293−309

doi: 10.1111/nph.15777
[5]

Sork VL, Aitken SN, Dyer RJ, Eckert AJ, Legendre P, et al. 2013. Putting the landscape into the genomics of trees: approaches for understanding local adaptation and population responses to changing climate. Tree Genetics & Genomes 9:901−11

doi: 10.1007/s11295-013-0596-x
[6]

Anderson JT, Willis JH, Mitchell-Olds T. 2011. Evolutionary genetics of plant adaptation. Trends in Genetics 27:258−66

doi: 10.1016/j.tig.2011.04.001
[7]

Omori M, Yamane H, Osakabe K, Osakabe Y, Tao R. 2021. Targeted mutagenesis of CENTRORADIALIS using CRISPR/Cas9 system through the improvement of genetic transformation efficiency of tetraploid highbush blueberry. The Journal of Horticultural Science and Biotechnology 96:153−61

doi: 10.1080/14620316.2020.1822760
[8]

Chhetri HB, Furches A, Macaya-Sanz D, Walker AR, Kainer D, et al. 2020. Genome-wide association study of wood anatomical and morphological traits in Populus trichocarpa. Frontiers in Plant Science 11:545748

doi: 10.3389/fpls.2020.545748
[9]

Mähler N, Schiffthaler B, Robinson KM, Terebieniec BK, Vučak M, et al. 2020. Leaf shape in Populus tremula is a complex, omnigenic trait. Ecology and Evolution 10:11922−40

doi: 10.1002/ece3.6691
[10]

Garot E, Dussert S, Domergue F, Joët T, Fock-Bastide I, et al. 2021. Multi-approach analysis reveals local adaptation in a widespread forest tree of Reunion Island. Plant and Cell Physiology 62:280−92

doi: 10.1093/pcp/pcaa160
[11]

Zhou Q, Shen X, Li Y. 2022. Variation pattern and genome-wide association study of leaf phenotypic traits among ancient Ginkgo biloba L. populations. Forests 13:1764

doi: 10.3390/f13111764
[12]

Chen Y, Niu S, Deng X, Song Q, He L, et al. 2023. Genome-wide association study of leaf-related traits in tea plant in Guizhou based on genotyping-by-sequencing. BMC Plant Biology 23:196

doi: 10.1186/s12870-023-04192-0
[13]

Ahmar S, Ballesta P, Ali M, Mora-Poblete F. 2021. Achievements and challenges of genomics-assisted breeding in forest trees: from marker-assisted selection to genome editing. International Journal of Molecular Sciences 22:10583

doi: 10.3390/ijms221910583
[14]

Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, et al. 2017. 10 years of GWAS discovery: biology, function, and translation. American Journal of Human Genetics 101:5−22

doi: 10.1016/j.ajhg.2017.06.005
[15]

Fernandes SB, Casstevens TM, Bradbury PJ, Lipka AE. 2022. A multi-trait multi-locus stepwise approach for conducting GWAS on correlated traits. The Plant Genome 15:e20200

doi: 10.1002/tpg2.20200
[16]

Visscher PM, Hemani G, Vinkhuyzen AAE, Chen GB, Lee SH, et al. 2014. Statistical power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS Genetics 10:e1004269

doi: 10.1371/journal.pgen.1004269
[17]

Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ, et al. 2017. Reevaluation of SNP heritability in complex human traits. Nature Genetics 49:986−92

doi: 10.1038/ng.3865
[18]

Alamin M, Sultana MH, Lou X, Jin W, Xu H. 2022. Dissecting complex traits using omics data: a review on the linear mixed models and their application in GWAS. Plants 11:3277

doi: 10.3390/plants11233277
[19]

Zhou X, Stephens M. 2014. Efficient multivariate linear mixed model algorithms for genome-wide association studies. Nature Methods 11:407−9

doi: 10.1038/nmeth.2848
[20]

Korte A, Vilhjálmsson BJ, Segura V, Platt A, Long Q, et al. 2012. A mixed-model approach for genome-wide association studies of correlated traits in structured populations. Nature Genetics 44:1066−71

doi: 10.1038/ng.2376
[21]

Pritikin JN, Neale MC, Prom-Wormley EC, Clark SL, Verhulst B. 2021. GW-SEM 2.0: efficient, flexible, and accessible multivariate GWAS. Behavior Genetics 51:343−57

doi: 10.1007/s10519-021-10043-1
[22]

Yang W, Yao D, Wu H, Zhao W, Chen Y, et al. 2021. Multivariate genome-wide association study of leaf shape in a Populus deltoides and P. simonii F1 pedigree. PLoS ONE 16:e0259278

doi: 10.1371/journal.pone.0259278
[23]

De La Torre AR, Sekhwal MK, Puiu D, Salzberg SL, Scott AD, et al. 2022. Genome-wide association identifies candidate genes for drought tolerance in coast redwood and giant sequoia. The Plant Journal 109:7−22

doi: 10.1111/tpj.15592
[24]

Xia H, Hao Z, Shen Y, Tu Z, Yang L, et al. 2023. Genome-wide association study of multiyear dynamic growth traits in hybrid Liriodendron identifies robust genetic loci associated with growth trajectories. The Plant Journal 115:1544−63

doi: 10.1111/tpj.16337
[25]

Stephens M. 2013. A unified framework for association analysis with multiple related phenotypes. PLoS ONE 8:e65245

doi: 10.1371/journal.pone.0065245
[26]

Liu M, Zhao Y, Liu X, Korpelainen H, Li C. 2022. Ammonium and nitrate affect sexually different responses to salt stress in Populus cathayana. Physiologia Plantarum 174:e13626

doi: 10.1111/ppl.13626
[27]

Zong D, Zhou A, Zhang Y, Zou X, Li D, et al. 2019. Characterization of the complete chloroplast genomes of five Populus species from the western Sichuan plateau, southwest China: comparative and phylogenetic analyses. PeerJ 7:e6386

doi: 10.7717/peerj.6386
[28]

Cao D, Zhang Y, Cheng X, Xiang X, Zhang L, et al. 2021. Genetic variation of leaf phenotypic traits in different populations of Populus cathayana. Scientia Silvae Sinicae 57:56−67

doi: 10.11707/j.1001-7488.20210806
[29]

Cheng X, Jia H, Sun P, Zhang Y, Hu J. 2019. Genetic variation analysis of leaf morphological traits in Populus deltoides cl. 'Danhong' × P. simonii cl. 'Tongliao 1' Hybrid Progenies. Forest Research 32:100−10

doi: 10.13275/j.cnki.lykxyj.2019.02.015
[30]

Wickham H, François R, Henry L, Müller K, Vaughan D. 2023. dplyr: a grammar of data manipulation. R package version 1.1.4, https://dplyr.tidyverse.org.

[31]

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1−48

doi: 10.18637/jss.v067.i01
[32]

Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software 25:1−18

doi: 10.18637/jss.v025.i01
[33]

Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. 2017. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8:28−36

doi: 10.1111/2041-210X.12628
[34]

Xiang X, Zhou X, Zi H, Wei H, Cao D, et al. 2024. Populus cathayana genome and population resequencing provide insights into its evolution and adaptation. Horticulture Research 11:uhad255

doi: 10.1093/hr/uhad255
[35]

Li H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv1303.3997

doi: 10.48550/arXiv.1303.3997
[36]

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078−79

doi: 10.1093/bioinformatics/btp352
[37]

Mckenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a mapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303

doi: 10.1101/gr.107524.110
[38]

Danecek P, Auton A, Abecasis G, Albers CA, Banks E, et al. 2011. The variant call format and VCFtools. Bioinformatics 27:2156−58

doi: 10.1093/bioinformatics/btr330
[39]

Chen H, Patterson N, Reich D. 2010. Population differentiation as a test for selective sweeps. Genome Research 20:393−402

doi: 10.1101/gr.100545.109
[40]

San L, He Z, Liu Y, Zhang Y, Cao W, et al. 2023. Genetic diversity and signatures of selection in the Roughskin Sculpin (Trachidermus fasciatus) revealed by whole genome sequencing. Biology 12:1427

doi: 10.3390/biology12111427
[41]

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81:559−75

doi: 10.1086/519795
[42]

Zhou X, Stephens M. 2012. Genome-wide efficient mixed-model analysis for association studies. Nature Genetics 44:821−24

doi: 10.1038/ng.2310
[43]

Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, et al. 2011. The evolution and functional significance of leaf shape in the angiosperms. Functional Plant Biology 38:535−52

doi: 10.1071/FP11057
[44]

Yin L, Zhang H, Tang Z, Xu J, Yin D, et al. 2021. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics, Proteomics & Bioinformatics 19:619−28

doi: 10.1016/j.gpb.2020.10.007
[45]

Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, et al. 2015. A multivariate genome-wide association analysis of 10 LDL subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10:e0120758

doi: 10.1371/journal.pone.0120758
[46]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[47]

McKown AD, Guy RD, Quamme L, Klápště J, La Mantia J, et al. 2014. Association genetics, geography and ecophysiology link stomatal patterning in Populus trichocarpa with carbon gain and disease resistance trade-offs. Molecular Ecology 23:5771−90

doi: 10.1111/mec.12969
[48]

Zhu X, Sun F, Sang M, Ye M, Bo W, et al. 2022. Genetic architecture of heterophylly: single and multi-leaf genome-wide association mapping in Populus euphratica. Frontiers in Plant Science 13:870876

doi: 10.3389/fpls.2022.870876
[49]

Holliday JA, Zhou L, Bawa R, Zhang M, Oubida RW. 2016. Evidence for extensive parallelism but divergent genomic architecture of adaptation along altitudinal and latitudinal gradients in Populus trichocarpa. New Phytologist 209:1240−51

doi: 10.1111/nph.13643
[50]

Momayyezi M, Guy RD. 2017. Substantial role for carbonic anhydrase in latitudinal variation in mesophyll conductance of Populus trichocarpa Torr. & Gray. Plant, Cell & Environment 40:138−49

doi: 10.1111/pce.12851
[51]

Ye M, Zhu X, Gao P, Jiang L, Wu R. 2020. Identification of quantitative trait loci for altitude adaptation of tree leaf shape with Populus szechuanica in the Qinghai-Tibetan plateau. Frontiers in Plant Science 11:632

doi: 10.3389/fpls.2020.00632
[52]

Boyle EA, Li YI, Pritchard JK. 2017. An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177−86

doi: 10.1016/j.cell.2017.05.038
[53]

Guo M, Zhang Z, Cheng Y, Li S, Shao P, et al. 2020. Comparative population genomics dissects the genetic basis of seven domestication traits in jujube. Horticulture Research 7:89

doi: 10.1038/s41438-020-0312-6
[54]

Li L, Zhang C, Huang J, Liu Q, Wei H, et al. 2021. Genomic analyses reveal the genetic basis of early maturity and identification of loci and candidate genes in upland cotton (Gossypium hirsutum L.). Plant Biotechnology Journal 19:109−23

doi: 10.1111/pbi.13446
[55]

Liu T, Wang P, Tian J, Guo J, Zhu W, et al. 2022. Polystyrene sulfonate is effective for enhancing biomass enzymatic saccharification under green liquor pretreatment in bioenergy poplar. Biotechnology for Biofuels and Bioproducts 15:10

doi: 10.1186/s13068-022-02108-y
[56]

Wang J, Hu Z, Liao X, Wang Z, Li W, et al. 2022. Whole-genome resequencing reveals signature of local adaptation and divergence in wild soybean. Evolutionary Applications 15:1820−33

doi: 10.1111/eva.13480
[57]

Hu Y, Feng C, Yang L, Edger PP, Kang M. 2022. Genomic population structure and local adaptation of the wild strawberry Fragaria nilgerrensis. Horticulture Research 9:uhab059

doi: 10.1093/hr/uhab059
[58]

Rowland E, Kim J, Friso G, Poliakov A, Ponnala L, et al. 2022. The CLP and PREP protease systems coordinate maturation and degradation of the chloroplast proteome in Arabidopsis thaliana. New Phytologist 236:1339−57

doi: 10.1111/nph.18426
[59]

Fukushima EO, Seki H, Ohyama K, Ono E, Umemoto N, et al. 2011. CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant and Cell Physiology 52:2050−61

doi: 10.1093/pcp/pcr146