[1] |
Urban DL, Ferkul P, Olson S, Ruff GA, Easton J, et al. 2019. Flame spread: effects of microgravity and scale. Combustion and Flame 199:168−82 doi: 10.1016/j.combustflame.2018.10.012 |
[2] |
Torero JL, Bonneau L, Most JM, Joulain P. 1994. The effect of gravity on a laminar diffusion flame established over a horizontal flat plate. Symposium (International) on Combustion 25(1):1701−9 doi: 10.1016/s0082-0784(06)80818-0 |
[3] |
Urban DL, Yuan ZG, Sunderland PB, Linteris GT, Voss JE, et al. 1998. Structure and soot properties of nonbuoyant ethylene/air laminar jet diffusion flames. AIAA Journal 36(8):1346−60 doi: 10.2514/2.542 |
[4] |
Greenberg PS, Ku JC. 1997. Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames. Combustion and Flame 108:227−30 doi: 10.1016/S0010-2180(96)00205-2 |
[5] |
Fujita O. 2015. Solid combustion research in microgravity as a basis of fire safety in space. Proceedings of the Combustion Institute 35(3):2487−502 doi: 10.1016/j.proci.2014.08.010 |
[6] |
Olson SL. 1991. Mechanisms of microgravity flame spread over a thin solid fuel: oxygen and opposed flow effects. Combustion Science and Technology 76:233−49 doi: 10.1080/00102209108951711 |
[7] |
Citerne JM, Dutilleul H, Kizawa K, Nagachi M, Fujita O, et al. 2016. Fire safety in space - investigating flame spread interaction over wires. Acta Astronautica 126:500−9 doi: 10.1016/j.actaastro.2015.12.021 |
[8] |
Li C, Liao YTT, T'ien J, Urban D, Ferkul P, et al. 2019. Transient flame growth and spread processes over a large solid fabric in concurrent low-speed flows in microgravity – Model versus experiment. Proceedings of the Combustion Institute 37(3):4163−71 doi: 10.1016/j.proci.2018.05.168 |
[9] |
Ramachandra PA, Altenkirch RA, Bhattacharjee S, Tang L, Sacksteder K, et al. 1995. The behavior of flames spreading over thin solids in microgravity. Combustion and flame 100(1−2):71−84 doi: 10.1016/0010-2180(94)00046-U |
[10] |
Bhattacharjee S, Altenkirch RA, Sacksteder K. 1996. The effect of ambient pressure on flame spread over thin cellulosic fuel in a quiescent microgravity environment. Journal of Heat Transfer 118:181−90 doi: 10.1115/1.2824032 |
[11] |
Rouvreau S, Torero J, Joulain P. 2005. Numerical evaluation of boundary layer assumptions for laminar diffusion flames in microgravity. Combustion Theory and Modelling 9(1):137−58 doi: 10.1080/13647830500098381 |
[12] |
Fuentes A, Legros G, Claverie A, Joulain P, Vantelon JP, et al. 2006. Influence of the oxidizer velocities on the sooting behaviour of non-buoyant laminar diffusion flame. 31th Symposium (International) on Combustion, Pittsburgh, The Combustion Institute. pp. 2685−92. San Diego, USA: Elsevier. |
[13] |
Legros G, Joulain P, Vantelon JP, Fuentes A, Bertheau D, et al. 2006. Soot volume fraction measurements in a three dimensional laminar diffusion flame established in microgravity. Combustion Science and Technology 178(5):813−35 doi: 10.1080/00102200500271344 |
[14] |
Hu L, Lu Y, Yoshioka K, Zhang Y, Fernandez-Pello C, et al. 2017. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal-and micro-gravity. Proceedings of the Combustion Institute 36(2):3045−53 doi: 10.1016/j.proci.2016.09.021 |
[15] |
Legros G, Fuentes A, Rouvreau S, Joulain P, Porterie B, et al. 2009. Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame. Proceedings of the Combustion Institute 32(2):2461−70 doi: 10.1016/j.proci.2008.06.179 |
[16] |
Tyurenkova VV, Smirnova MN. 2016. Material combustion in oxidant flows: self-similar solutions. Acta Astronautica 120:129−37 doi: 10.1016/j.actaastro.2015.11.033 |
[17] |
Smirnov NN, Tyurenkova VV, Smirnova MN. 2015. Laminar diffusion flame propagation over thermally destructing material. Acta Astronautica 109:217−24 doi: 10.1016/j.actaastro.2014.09.016 |
[18] |
Guibaud A, Citerne JM, Orlac’h JM, Fujita O, Consalvi JL, et al. 2019. Broadband modulated absorption/emission technique to probe sooting flames: Implementation, validation, and limitations. Proceedings of the Combustion Institute 37(3):3959−66 doi: 10.1016/j.proci.2018.06.199 |
[19] |
Guibaud A, Consalvi JL, Orlac’h JM, Citerne JM, Legros G. 2020. Soot production and radiative heat transfer in opposed flame spread over a polyethylene insulated wire in microgravity. Fire Technology 56:287−314 doi: 10.1007/s10694-019-00850-8 |
[20] |
Leung KM, Lindstedt RP, Jones WP. 1991. A simplified reaction mechanism for soot formation in nonpremixed flames. Combustion and Flame 87(3-4):289−305 doi: 10.1016/0010-2180(91)90114-Q |
[21] |
Wang HY, Merino JLF, Dagaut P. 2011. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity. Journal of Physics: Conference Series 327:012038 doi: 10.1088/1742-6596/327/1/012038 |
[22] |
Beji T, Zhang JP, Delichatsios M. 2008. Determination of soot formation rate from laminar smoke point measurements. Combustion Science and Technology 180(5):927−40 doi: 10.1080/00102200801894398 |
[23] |
McGrattan K, Hostikka S, McDermott R, Floyd J, Weinschenk C, et al. 2013. Fire dynamics simulator user’s guide. NIST special publication 1019. 6th Edition. Baltimore, Maryland, US: National Institute of Standards and Technology (NIST). 262 pp. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913619 |
[24] |
Orloff L, de Ris J, Delichatsios MA. 1987. Chemical effects on molecular species concentrations in turbulent fires. Combustion and Flame 69(3):273−89 doi: 10.1016/0010-2180(87)90121-0 |
[25] |
Westbrook CK, Dryer FL. 1981. Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combustion Science and Technology 27(1-2):31−43 doi: 10.1080/00102208108946970 |
[26] |
Andersen J, Rasmussen CL, Giselsson T, Glarborg P. 2009. Global combustion mechanisms for use in CFD modeling under oxy-fuel conditions. Energy & Fuels 23(3):1379−89 doi: 10.1021/ef8003619 |
[27] |
Hunt RA. 1953. Relation of smoke point to molecular structure. Industrial & Engineering Chemistry 45(3):602−6 doi: 10.1021/ie50519a039 |
[28] |
Moss JB, Stewart CD, Young KJ. 1995. Modeling soot formation and burnout in a high temperature laminar diffusion flame burning under oxygen-enriched conditions. Combustion and flame 101(4):491−500 doi: 10.1016/0010-2180(94)00233-I |
[29] |
Lee KB, Thring MW, Beér JM. 1962. On the rate of combustion of soot in a laminar soot flame. Combustion and Flame 6:137−45 doi: 10.1016/0010-2180(62)90082-2 |
[30] |
Wang HY. 2022. Impact of fuel type on toxic emissions from a non-premixed boundary layer laminar flame in microgravity – a numerical study. Microgravity Science and Technology 34(5):94 doi: 10.1007/s12217-022-10011-2 |
[31] |
Turns SR. 1996. An Introduction to Combustion, Concepts and Applications, Appendix B. New York, US: McGraw-Hill. pp. 542-546. |