[1]

DaCosta M, Huang B. 2013. Heat-stress physiology and management. In Turfgrass: Biology, Use, and Management, ed. Stier JC, Horgan BP, Bonos SA, Volume 56, Madison, WI: Crop Science Society of America. pp. 249−78. https://doi.org/10.2134/agronmonogr56.c7

[2]

Fan J, Zhang W, Amombo E, Hu L, Kjorven JO, et al. 2020. Mechanisms of environmental stress tolerance in turfgrass. Agronomy 10:522

doi: 10.3390/agronomy10040522
[3]

Tan Z, Zhang X, Yang Z. 2021. Research advances in heat resistance of cool-season turfgrasses. Acta Prataculturae Sinica 30:193−202

doi: 10.11686/cyxb2020331
[4]

Li L, Zhao L, Zhong H, He S, Yang X, et al. 2018. Effects of high temperature stress on the seedling characteristics of perennial ryegrass. Journal of Anhui Agricultural Sciences 46:85−86

doi: 10.3969/j.issn.0517-6611.2018.26.026
[5]

Beard JB, Daniel WH. 1965. Effect of temperature and cutting on the growth of creeping bentgrass (Agrostis palustris Huds.) roots. Agronomy Journal 57:249−50

doi: 10.2134/agronj1965.00021962005700030006x
[6]

Huang B, Liu X, Fry JD. 1998. Effects of high temperature and poor soil aeration on root growth and viability of creeping bentgrass. Crop Science 38:1618−22

doi: 10.2135/cropsci1998.0011183X003800060034x
[7]

Zhao Z, Hu L, Hu T, Fu J. 2015. Differential metabolic responses of two tall fescue genotypes to heat stress. Acta Prataculturae Sinica 24:58−69

doi: 10.11686/cyxb20150306
[8]

Xu Q, Huang B. 2001. Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. Crop Science 41:127−33

doi: 10.2135/cropsci2001.411127x
[9]

Zhang J, Xie X, Dong Z. 2007. An evaluation on the heat tolerance of coolseason turf grasses under field heat stress. Pratacultural Science 24:105−09

doi: 10.3969/j.issn.1001-0629.2007.02.025
[10]

He Y, Huang B. 2007. Protein changes during heat stress in three Kentucky bluegrass cultivars differing in heat tolerance. Crop Science 47:2513−20

doi: 10.2135/cropsci2006.12.0821
[11]

Rossi S, Chapman C, Yuan B, Huang B. 2021. Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Research 1:4

doi: 10.48130/GR-2021-0004
[12]

Yu G, Xie Z, Chen W, Xu B, Huang B. 2022. Knock down of NON-YELLOW COLOURING 1-like gene or chlorophyllin application enhanced chlorophyll accumulation with antioxidant roles in suppressing heat-induced leaf senescence in perennial ryegrass. Journal of Experimental Botany 73:429−44

doi: 10.1093/jxb/erab426
[13]

Sies H, Jones DP. 2020. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nature Reviews Molecular Cell Biology 21:363−83

doi: 10.1038/s41580-020-0230-3
[14]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79

doi: 10.1038/s41580-022-00499-2
[15]

Huang B, Liu X, Xu Q. 2001. Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Science 41:430−35

doi: 10.2135/cropsci2001.412430x
[16]

Bi A, Fan J, Hu Z, Wang G, Amombo E, et al. 2016. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses. Frontiers in Plant Science 7:453

doi: 10.3389/fpls.2016.00453
[17]

Sun T, Shao K, Huang Y, Lei Y, Tan L, et al. 2020. Natural variation analysis of perennial ryegrass in response to abiotic stress highlights LpHSFC1b as a positive regulator of heat stress. Environmental and Experimental Botany 179:104192

doi: 10.1016/j.envexpbot.2020.104192
[18]

Du H, Wang Z, Huang B. 2009. Differential responses of warm-season and cool-season turfgrass species to heat stress associated with antioxidant enzyme activity. Journal of the American Society for Horticultural Science 134:417−22

doi: 10.21273/JASHS.134.4.417
[19]

Liu M, Sun T, Liu C, Zhang H, Wang W, et al. 2022. Integrated physiological and transcriptomic analyses of two warm- and cool-season turfgrass species in response to heat stress. Plant Physiology and Biochemistry 170:275−86

doi: 10.1016/j.plaphy.2021.12.013
[20]

Huang B, DaCosta M, Jiang Y. 2014. Research advances in mechanisms of turfgrass tolerance to abiotic stresses: from physiology to molecular biology. Critical Reviews in Plant Sciences 33:141−89

doi: 10.1080/07352689.2014.870411
[21]

Xu Y, Chu C, Yao S. 2021. The impact of high-temperature stress on rice: challenges and solutions. The Crop Journal 9:963−76

doi: 10.1016/j.cj.2021.02.011
[22]

Niu Y, Xiang Y. 2018. An overview of biomembrane functions in plant responses to high-temperature stress. Frontiers in Plant Science 9:915

doi: 10.3389/fpls.2018.00915
[23]

Yang Y, Liu D, Wang L. 2022. Research progress on the effects of high temperature stress on Festuca arundinacea. Journal of Grassland and Forage Science 264:15−22

doi: 10.3969/j.issn.2096-3971.2022.01.002
[24]

Zhao J, Lu Z, Wang L, Jin B. 2021. Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. International Journal of Molecular Sciences 22:117

doi: 10.3390/ijms22010117
[25]

Hu T, Sun X, Zhao Z, Amombo E, Fu J. 2020. High temperature damage to fatty acids and carbohydrate metabolism in tall fescue by coupling deep transcriptome and metabolome analysis. Ecotoxicology and Environmental Safety 203:110943

doi: 10.1016/j.ecoenv.2020.110943
[26]

Zhao N, Xu Q, Su P, Liang D, Tang Y. 2019. Differences in resistance to high temperature stres of 10 cool-season turfgrass varieties. Pratacultural Science 36:1743−53

[27]

Larkindale J, Huang B. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 51:57−67

doi: 10.1016/S0098-8472(03)00060-1
[28]

Dhanda SS, Munjal R. 2012. Heat tolerance in relation to acquired thermotolerance for membrane lipids in bread wheat. Field Crops Research 135:30−37

doi: 10.1016/j.fcr.2012.06.009
[29]

Higashi Y, Saito K. 2019. Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Progress in Lipid Research 75:100990

doi: 10.1016/j.plipres.2019.100990
[30]

Hu L, Bi A, Hu Z, Amombo E, Li H, et al. 2018. Antioxidant metabolism, photosystem II, and fatty acid composition of two tall fescue genotypes with different heat tolerance under high temperature stress. Frontiers in Plant Science 9:1242

doi: 10.3389/fpls.2018.01242
[31]

Peng Y, Huang B, Xu L, Li Z. 2013. Heat stress effects on osmotic potential, membrane fatty acid composition and lipid peroxidation content of two Kentucky bluegrass cultivars differing in drought tolerance. Acta Horticulturae Sinica 40:971−80

[32]

Wang X, Xu C, Cai X, Wang Q, Dai S. 2017. Heat-responsive photosynthetic and signaling pathways in plants: insight from proteomics. International Journal of Molecular Sciences 18:2191

doi: 10.3390/ijms18102191
[33]

Hüve K, Bichele I, Rasulov B, Niinemets Ü. 2011. When it is too hot for photosynthesis: heat-induced instability of photosynthesis in relation to respiratory burst, cell permeability changes and H2O2 formation. Plant, Cell & Environment 34:113−26

doi: 10.1111/j.1365-3040.2010.02229.x
[34]

Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M. 2013. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14:9643−84

doi: 10.3390/ijms14059643
[35]

Xu S, Li J, Zhang X, Wei H, Cui L. 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environmental and Experimental Botany 56:274−85

doi: 10.1016/j.envexpbot.2005.03.002
[36]

Cui L, Li J, Fan Y, Xu S, Zhang Z. 2006. High temperature effects on photosynthesis, PSII functionality and antioxidant activity of two Festuca arundinacea cultivars with different heat susceptibility. Botanical Studies 47:61−69

[37]

Zhang J, Li H, Huang X, Xing J, Yao J, et al. 2022. STAYGREEN-mediated chlorophyll a catabolism is critical for photosystem stability during heat-induced leaf senescence in perennial ryegrass. Plant, Cell & Environment 45:1412−27

doi: 10.1111/pce.14296
[38]

Sun X, Sun C, Li Z, Hu Q, Han L, et al. 2016. AsHSP17, a creeping bentgrass small heat shock protein modulates plant photosynthesis and ABA-dependent and independent signalling to attenuate plant response to abiotic stress. Plant, Cell & Environment 39:1320−37

doi: 10.1111/pce.12683
[39]

Morvan-Bertrand A, Boucaud J, Le Saos J, Prud'homme MP. 2001. Roles of the fructans from leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta 213:109−20

doi: 10.1007/s004250000478
[40]

Wang R, Wang Z, Xang Z. 2019. Effect of γ-aminobutyric acid on photosynthetic characteristics and carbohydrate metabolism under high temperature stress in perennial ryegrass. Acta Prataculturae Sinica 28:168−78

doi: 10.11686/cyxb2018167
[41]

Xu Q, Huang B, Wang Z. 2004. Effects of extended daylength on shoot growth and carbohydrate metabolism for creeping bentgrass exposed to heat stress. Journal of the American Society for Horticultural Science 129:193−97

doi: 10.21273/JASHS.129.2.0193
[42]

Sadok W, Lopez JR, Smith KP. 2021. Transpiration increases under high-temperature stress: potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant, Cell & Environment 44:2102−16

doi: 10.1111/pce.13970
[43]

Scafaro AP, Fan Y, Posch BC, Garcia A, Coast O, et al. 2021. Responses of leaf respiration to heatwaves. Plant, Cell & Environment 44:2090−101

doi: 10.1111/pce.14018
[44]

Jiang Y, Huang B. 2001. Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass. HortScience 36:682−86

doi: 10.21273/HORTSCI.36.4.682
[45]

Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, et al. 2021. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum 172:1321−35

doi: 10.1111/ppl.13297
[46]

Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:2

doi: 10.48130/GR-2023-0002
[47]

Sheikh-Mohamadi MH, Etemadi N, Arab M. 2018. Correlation of heat and cold tolerance in Iranian tall fescue ecotypes with reactive oxygen species scavenging and osmotic adjustment. HortScience 53:1062−68

doi: 10.21273/HORTSCI13088-18
[48]

Xia F, Han Z, Zhu H, Dong K, Du L. 2020. Comparison of osmoprotectants and antioxidant enzymes of different wild Kentucky bluegrass in Shanxi province under high-temperature stress. European Journal of Horticultural Sciences 85:284−92

[49]

Rossi S, Chapman C, Huang B. 2020. Suppression of heat-induced leaf senescence by γ-aminobutyric acid, proline, and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass. Environmental and Experimental Botany 177:104116

doi: 10.1016/j.envexpbot.2020.104116
[50]

Chan Z, Zhang H, Liu M. 2019. Roles of plant growth regulators during abiotic stress responses of turfgrass and forage. Pratacultural Science 36:3007−23

doi: 10.11829/j.issn.1001-0629.2019-0510
[51]

Wani SH, Kumar V, Shriram V, Sah SK. 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. The Crop Journal 4:162−76

doi: 10.1016/j.cj.2016.01.010
[52]

Li N, Euring D, Cha JY, Lin Z, Lu M, et al. 2021. Plant hormone-mediated regulation of heat tolerance in response to global climate change. Frontiers in Plant Science 11:627969

doi: 10.3389/fpls.2020.627969
[53]

Li M, Jannasch AH, Jiang Y. 2020. Growth and hormone alterations in response to heat stress in perennial ryegrass accessions differing in heat tolerance. Journal of Plant Growth Regulation 39:1022−29

doi: 10.1007/s00344-019-10043-w
[54]

Xu Y, Huang B. 2007. Heat-induced leaf senescence and hormonal changes for thermal bentgrass and turf-type bentgrass species differing in heat tolerance. Journal of the American Society for Horticultural Science 132:185−92

doi: 10.21273/JASHS.132.2.185
[55]

Li F, Zhan D, Xu L, Han L, Zhang X. 2014. Antioxidant and hormone responses to heat stress in two Kentucky bluegrass cultivars contrasting in heat tolerance. Journal of the American Society for Horticultural Science 139:587−96

doi: 10.21273/JASHS.139.5.587
[56]

Li Q, He Y, Tu M, Yan J, Yu L, et al. 2019. Transcriptome sequencing of two Kentucky bluegrass (Poa pratensis L.) genotypes in response to heat Stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 47:328−38

doi: 10.15835/nbha47111365
[57]

Wang Y, Dai Y, Tao X, Wang J, Cheng H, et al. 2015. Heat shock factor genes of tall fescue and perennial ryegrass in response to temperature stress by RNA-Seq analysis. Frontiers in Plant Science 6:1226

doi: 10.3389/fpls.2015.01226
[58]

Li Z, Cheng B, Zeng W, Liu Z, Peng Y. 2019. The transcriptional and post-transcriptional regulation in perennial creeping bentgrass in response to γ-aminobutyric acid (GABA) and heat stress. Environmental and Experimental Botany 162:515−24

doi: 10.1016/j.envexpbot.2019.03.026
[59]

Wang K, Liu Y, Tian J, Huang K, Shi T, et al. 2017. Transcriptional profiling and identification of heat-responsive genes in perennial ryegrass by RNA-sequencing. Frontiers in Plant Science 8:1032

doi: 10.3389/fpls.2017.01032
[60]

Andrási N, Pettkó-Szandtner A, Szabados L. 2021. Diversity of plant heat shock factors: regulation, interactions, and functions. Journal of Experimental Botany 72:1558−75

doi: 10.1093/jxb/eraa576
[61]

Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K. 2017. Transcriptional regulatory network of plant heat stress response. Trends in Plant Science 22:53−65

doi: 10.1016/j.tplants.2016.08.015
[62]

Scharf KD, Berberich T, Ebersberger I, Nover L. 2012. The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:104−19

doi: 10.1016/j.bbagrm.2011.10.002
[63]

Sun T, Wang W, Hu X, Fang Z, Wang Y, et al. 2022. Genome-wide identification of heat shock transcription factor families in perennial ryegrass highlights the role of LpHSFC2b in heat stress response. Physiologia Plantarum 174:e13828

doi: 10.1111/ppl.13828
[64]

Wang X, Huang W, Liu J, Yang Z, Huang B. 2017. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnology Journal 15:237−48

doi: 10.1111/pbi.12609
[65]

Ma G, Shen J, Yu H, Huang X, Deng X, et al. 2022. Genome-wide identification and functional analyses of heat shock transcription factors involved in heat and drought stresses in ryegrass. Environmental and Experimental Botany 201:104968

doi: 10.1016/j.envexpbot.2022.104968
[66]

Zhuang L, Cao W, Wang J, Yu J, Yang Z, et al. 2018. Characterization and functional analysis of FaHsfC1b from Festuca arundinacea conferring heat tolerance in Arabidopsis. International Journal of Molecular Sciences 19:2702

doi: 10.3390/ijms19092702
[67]

ul Haq S, Khan A, Ali M, Khattak AM, Gai WX, et al. 2019. Heat shock proteins: dynamic biomolecules to counter plant biotic and abiotic stresses. International Journal of Molecular Sciences 20:5321

doi: 10.3390/ijms20215321
[68]

Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science 9:244−52

doi: 10.1016/j.tplants.2004.03.006
[69]

Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, et al. 2007. Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10:310−16

doi: 10.1016/j.pbi.2007.04.011
[70]

Kim KH, Alam I, Kim YG, Sharmin SA, Lee KW, et al. 2012. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnology Letters 34:371−77

doi: 10.1007/s10529-011-0769-3
[71]

Bi A, Wang T, Wang G, Zhang L, Wassie M, et al. 2021. Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue. Plant Physiology 187:1163−76

doi: 10.1093/plphys/kiab205
[72]

Sun X, Huang N, Li X, Zhu J, Bian X, et al. 2021. A chloroplast heat shock protein modulates growth and abiotic stress response in creeping bentgrass. Plant, Cell & Environment 44:1769−87

doi: 10.1111/pce.14031
[73]

Wang J, Zhuang L, Zhang J, Yu J, Yang Z, et al. 2019. Identification and characterization of novel homeodomain leucine zipper (HD-Zip) transcription factors associated with heat tolerance in perennial ryegrass. Environmental and Experimental Botany 160:1−11

doi: 10.1016/j.envexpbot.2018.12.023
[74]

Huang K, Liu Y, Shi Y, Tian J, Shi T, et al. 2022. Overexpression of TaMBF1c improves thermo-tolerance of perennial ryegrass. Scientia Horticulturae 295:110812

doi: 10.1016/j.scienta.2021.110812
[75]

Lei S, Yu G, Rossi S, Yu J, Huang B. 2021. LpNOL-knockdown suppression of heat-induced leaf senescence in perennial ryegrass involving regulation of amino acid and organic acid metabolism. Physiologia Plantarum 173:1979−91

doi: 10.1111/ppl.13541
[76]

Zhang J, Li H, Jiang Y, Li H, Zhang Z, et al. 2020. Natural variation of physiological traits, molecular markers, and chlorophyll catabolic genes associated with heat tolerance in perennial ryegrass accessions. BMC Plant Biology 20:520

doi: 10.1186/s12870-020-02695-8
[77]

Khraiwesh B, Zhu JK, Zhu J. 2012. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819:137−48

doi: 10.1016/j.bbagrm.2011.05.001
[78]

Amini Z, Salehi H, Chehrazi M, Etemadi M, Xiang M. 2023. miRNAs and their target genes play a critical role in response to heat stress in Cynodon dactylon (L.) Pers. Molecular Biotechnology 65:2004−17

doi: 10.1007/s12033-023-00713-2
[79]

Liao Z, Ghanizadeh H, Zhang X, Zhou Y, Huang L, et al. 2023. Exogenous methyl jasmonate mediated miRNA-mRNA network improves heat tolerance of perennial ryegrass. International Journal of Molecular Sciences 24:11085

doi: 10.3390/ijms241311085
[80]

Taier G, Hang N, Shi T, Liu Y, Ye W, et al. 2021. Ectopic expression of Os-miR408 improves thermo-tolerance of perennial ryegrass. Agronomy 11:1930

doi: 10.3390/agronomy11101930
[81]

Zhao J, Yuan S, Zhou M, Yuan N, Li Z, et al. 2019. Transgenic creeping bentgrass overexpressing Osa‐miR393a exhibits altered plant development and improved multiple stress tolerance. Plant Biotechnology Journal 17:233−51

doi: 10.1111/pbi.12960
[82]

Li H, Hu T, Amombo E, Fu J. 2017. Genome-wide identification of heat stress-responsive small RNAs in tall fescue (Festuca arundinacea) by high-throughput sequencing. Journal of Plant Physiology 213:157−65

doi: 10.1016/j.jplph.2017.03.004
[83]

Balazadeh S. 2022. A 'hot' cocktail: the multiple layers of thermomemory in plants. Current Opinion in Plant Biology 65:102147

doi: 10.1016/j.pbi.2021.102147
[84]

Xu S, He X, Chen W, Li J, Zhang J. 2008. Effects of heat acclimation on high-temperature stress resistance and heattolerance mechanism of Festuca arundinacea and Lolium perenne. Acta Ecologica Sinica 28:162−71

[85]

Chan Z, Hu T, Wang Z, Shao A, Han L, et al. 2023. Research progress, future challenge and development trend of turf science. Bulletin of National Natural Science Foundation of China 37:623−31

doi: 10.16262/j.cnki.1000-8217.2023.04.011
[86]

Driedonks N, Rieu I, Vriezen WH. 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction 29:67−79

doi: 10.1007/s00497-016-0275-9
[87]

Meyer WA, Hoffman L, Bonos SA. 2017. Breeding cool-season turfgrass cultivars for stress tolerance and sustainability in a changing environment. International Turfgrass Society Research Journal 13:3−10

doi: 10.2134/itsrj2016.09.0806
[88]

Zhang W, Dewey RE, Boss W, Phillippy BQ, Qu R. 2013. Enhanced Agrobacterium-mediated transformation efficiencies in monocot cells is associated with attenuated defense responses. Plant Molecular Biology 81:273−86

doi: 10.1007/s11103-012-9997-8
[89]

Wang Z, Ge Y. 2005. Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). Journal of Plant Physiology 162:103−13

doi: 10.1016/j.jplph.2004.07.009
[90]

Luo H, Hu Q, Nelson K, Longo C, Kausch AP, et al. 2004. Agrobacterium tumefaciens-mediated creeping bentgrass (Agrostis stolonifera L.) transformation using phosphinothricin selection results in a high frequency of single-copy transgene integration. Plant Cell Reports 22:645−52

doi: 10.1007/s00299-003-0734-2
[91]

Zhang K, Wang J, Hu X, Yang A, Zhang J. 2010. Agrobacterium-mediated transformation of shoot apices of Kentucky bluegrass (Poa pratensis L.) and production of transgenic plants carrying a betA gene. Plant Cell, Tissue and Organ Culture 102:135−43

doi: 10.1007/s11240-010-9713-9
[92]

Zhang Y, Ran Y, Nagy I, Lenk I, Qiu J, et al. 2020. Targeted mutagenesis in ryegrass (Lolium spp.) using the CRISPR/Cas9 system. Plant Biotechnology Journal 18:1854

doi: 10.1111/pbi.13359
[93]

Ha SB, Wu FS, Thorne TK. 1992. Transgenic turf-type tall fescue (Festuca amndinacea Schreb.) plants regenerated from protoplasts. Plant Cell Reports 11:601−04

doi: 10.1007/BF00236381
[94]

Xie Y, Haq SIU, Jiang X, Zheng D, Feng N, et al. 2022. Plant genome editing: CRISPR, base editing, prime editing, and beyond. Grassland Research 1:234−43

doi: 10.1002/glr2.12034
[95]

Yao J, Hao H, Zhang J, Xu B. 2023. The use of the tRNA-sgRNA/Cas9 system for gene editing in perennial ryegrass protoplasts. Acta Prataculturae Sinica 32:129−41

doi: 10.11686/cyxb2022180
[96]

Zhang L, Wang T, Wang G, Bi A, Wassie M, et al. 2021. Simultaneous gene editing of three homoeoalleles in self-incompatible allohexaploid grasses. Journal of Integrative Plant Biology 63:1410−15

doi: 10.1111/jipb.13101
[97]

Wu X, Feng H, Wu D, Yan S, Zhang P, et al. 2021. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology 22:185

doi: 10.1186/s13059-021-02377-0
[98]

Kim SL, Kim N, Lee H, Lee E, Cheon KS, et al. 2020. High-throughput phenotyping platform for analyzing drought tolerance in rice. Planta 252:38

doi: 10.1007/s00425-020-03436-9