[1] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA. 2012. A programmable dual RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816−21 doi: 10.1126/science.1225829 |
[2] |
Feng Z, Mao Y, Xu N, Zhao B, Wei P, et al. 2014. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:4632−37 doi: 10.1073/pnas.1400822111 |
[3] |
Wang Z, Xing H, Li D, Zhang H, Hang C, et al. 2015. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology 16:144 doi: 10.1186/s13059-015-0715-0 |
[4] |
He X, Huang G, Wang D, Chang S, Zhang D. 2017. Generation of the mutations for OsYUCCA1 in rice using CRISPR/Cas9 approach. Genomics and Applied Biology 36:4778−84 |
[5] |
Mishra R, Joshi RK, Zhao K. 2018. Genome editing in rice: recent advances, challenges, and future implications. Frontiers in Plant Science 9:1361 doi: 10.3389/fpls.2018.01361 |
[6] |
Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, et al. 2017. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. The Plant Journal 89:1251−62 doi: 10.1111/tpj.13446 |
[7] |
Liu L, Zhang J, Xu J, Li Y, Guo L, et al. 2020. CRISPR/Cas9 targeted mutagenesis of SlLBD40, a lateral organ boundaries domain transcription factor, enhances drought tolerance in tomato. Plant Science 301:110683 doi: 10.1016/j.plantsci.2020.110683 |
[8] |
Wang Z, He Z, Qu M, Liu Z, Wang C, et al. 2021. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. Forestry Research 1:16 doi: 10.48130/FR-2021-0016 |
[9] |
Tsai CJ, Xu P, Xue L, Hu H, Nyamdari B, et al. 2020. Compensatory guaiacyl lignin biosynthesis at the expense of syringyl lignin in 4CL1-knockout poplar. Plant Physiology 183:123−36 doi: 10.1104/pp.19.01550 |
[10] |
Collias D, Beisel CL. 2021. CRISPR technologies and the search for the PAM-free nuclease. Nature Communications 12:555 doi: 10.1038/s41467-020-20633-y |
[11] |
Yuan G, Martin S, Hassan MM, Tuskan GA, Yang X. 2022. PARA: a new platform for the rapid assembly of gRNA arrays for multiplexed CRISPR technologies. Cells 11:2467 doi: 10.3390/cells11162467 |
[12] |
Celińska E, Ledesma-Amaro R, Larroude M, Rossignol T, Pauthenier C, et al. 2017. Golden Gate Assembly system dedicated to complex pathway manipulation in Yarrowia lipolytica. Microbial Biotechnology 10:450−55 doi: 10.1111/1751-7915.12605 |
[13] |
McQuinn RP, Wong B, Giovannoni JJ. 2018. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content. Plant Biotechnology Journal 16:482−94 doi: 10.1111/pbi.12789 |
[14] |
Wolabu TW, Park JJ, Chen M, Cong L, Ge Y, et al. 2020. Improving the genome editing efficiency of CRISPR/Cas9 in Arabidopsis and Medicago truncatula. Planta 252:15 doi: 10.1007/s00425-020-03415-0 |
[15] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686−88 doi: 10.1038/nbt.2650 |
[16] |
Komatsu H, Abdellatif IMY, Yuan S, Ono M, Nonaka S, et al. 2020. Genome editing in PDS genes of tomatoes by non-selection method and of Nicotiana benthamiana by one single guide RNA to edit two orthologs. Plant Biotechnology 37:213−21 doi: 10.5511/plantbiotechnology.20.0527b |
[17] |
Ntui VO, Tripathi JN, Tripathi L. 2020. Robust CRISPR/Cas9 mediated genome editing tool for banana and plantain (Musa spp.). Current Plant Biology 21:100128 doi: 10.1016/j.cpb.2019.100128 |
[18] |
Nishitani C, Hirai N, Komori S, Wada M, Okada K, et al. 2016. Efficient genome editing in apple using a CRISPR/Cas9 system. Scientific Reports 6:31481 doi: 10.1038/srep31481 |
[19] |
Bonde MR, Murphy CA, Bauchan GR, Luster DG, Palmer CL, et al. 2015. Evidence for systemic infection by Puccinia horiana, causal agent of chrysanthemum white rust, in chrysanthemum. Phytopathology 105:91−98 doi: 10.1094/PHYTO-09-13-0266-R |
[20] |
Deenamo N, Kuyyogsuy A, Khompatara K, Chanwun T, Ekchaweng K, et al. 2018. Salicylic acid induces resistance in rubber tree against Phytophthora palmivora. International Journal of Molecular Sciences 19:1883 doi: 10.3390/ijms19071883 |
[21] |
Bety YA, Pangestuti R. 2023. Resistance varieties and pattern of disease progress of rust (Pucciana horiana p. henn) in Chrysanthemum. IOP Conference Series: Earth and Environmental Science 883:012023 doi: 10.1088/1755-1315/883/1/012023 |
[22] |
Bi M, Li X, Yan X, Liu D, Gao G, et al. 2021. Chrysanthemum WRKY15-1 promotes resistance to Puccinia horiana Henn. via the salicylic acid signaling pathway. Horticulture Research 8:6 doi: 10.1038/s41438-020-00436-4 |
[23] |
Qi P, Huang M, Hu X, Zhang Y, Wang Y, et al. 2022. A Ralstonia solanacearum effector targets TGA transcription factors to subvert salicylic acid signalin. The Plant Cell 34:1666−83 doi: 10.1093/plcell/koac015 |
[24] |
Tian Y, Zhang C, Zhu C. 2023. Functional characterization of apple MdTGA2.1 in Arabidopsis with reduced SA sensitivity and increased stress tolerance. Journal of Plant Growth Regulation 42:481−90 doi: 10.1007/s00344-021-10568-z |
[25] |
Jiang H, Gu S, Li K, Gai J. 2021. Two TGA transcription factor members from hyper-susceptible soybean exhibiting significant basal resistance to Soybean mosaic virus. International Journal of Molecular Sciences 22:11329 doi: 10.3390/ijms222111329 |
[26] |
Gao G, Jin R, Liu D, Zhang X, Sun X, et al. 2022. CmWRKY15-1 promotes resistance to chrysanthemum white rust by regulating CmNPR1 Expression. Frontiers in Plant Science 13:865607 doi: 10.3389/fpls.2022.865607 |
[27] |
Li X. 2020. Functional verification of resistance gene CmWRKY15-1 of chrysanthemum white rust disease based on TRV-VIGS. Shenyang Agricultural University, Shenyang. |
[28] |
Watanabe K, Kobayashi A, Endo M, Sage-Ono K, Toki S, et al. 2017. CRISPR/Cas9-mediated mutagenesis of the dihydroflavonol-4-reductase-B (DFR-B) locus in the Japanese morning glory Ipomoea (Pharbitis) nil. Scientific Reports 7:10028 doi: 10.1038/s41598-017-10715-1 |
[29] |
Yan R, Wang Z, Ren Y, Li H, Li N, et al. 2019. Establishment of efficient genetic transformation systems and application of CRISPR/Cas9 genome editing technology in Lilium pumilum DC. Fisch. and Lilium longiflorum white heaven. International Journal of Molecular Sciences 20:2920 doi: 10.3390/ijms20122920 |
[30] |
Liu L, Xue Y, Luo J, Han M, Liu X, et al. 2023. Developing a UV–visible reporter-assisted CRISPR/Cas9 gene editing system to alter flowering time in Chrysanthemum indicum. Plant Biotechnology Journal 21:1519−21 doi: 10.1111/pbi.14062 |
[31] |
Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, et al. 2015. A robust CRISPR/Cas9 system for convenient, high-efficiency MultiplexGenome editing in monocot and dicot plants. Molecular Plant 8:1274−84 doi: 10.1016/j.molp.2015.04.007 |
[32] |
Liang G, Zhang H, Lou D, Yu D. 2016. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Scientific Reports 6:21451 doi: 10.1038/srep21451 |
[33] |
LeBlanc C, Zhang F, Mendez J, Lozano Y, Chatpar K, et al. 2018. Increased efficiency of targeted mutagenesis by CRISPR/Cas9 in plants using heat stress. The Plant Journal 93:377−86 doi: 10.1111/tpj.13782 |
[34] |
Wan L, Wang Z, Tang M, Zhang X, Zeng H, et al. 2022. Research progress of CRISPR-Cas9 technology application and achievement in vegetable crops genetic improvement. Hubei Agricultural Sciences 61:100−09 |
[35] |
Yu M, Li X, Ma G, Yang L, Ni D, et al. 2017. Establishment of genome editing system for lettuce CRISPR/Cas9. Journal of Plant Physiology 53:736−46 |
[36] |
Zuo X, Li M, Li X, Miao C, Li Y, et al. 2022. Application of CRISPR/Cas9 technology in Tianmu Dihuang RcPDS1 genome editing. Journal of Horticulture 49:1532−44 |
[37] |
Li P, Li X, Jiang M. 2021. CRISPR/Cas9-mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and Me-JA stress tolerance in Arabidopsis thaliana. Molecular Biology Reports 48:5821−32 doi: 10.1007/s11033-021-06541-4 |
[38] |
Kishi-Kaboshi M, Aida R, Sasaki K. 2017. Generation of gene-edited Chrysanthemum morifolium using multicopy transgenes as targets and markers. Plant and Cell Physiology 58:216−66 doi: 10.1093/pcp/pcw222 |