[1] |
Wang SG, Zhang SM, Wang SP, Gao P, Dai L. 2020. A comprehensive review on Pueraria: Insights on its chemistry and medicinal value. Biomedicine & Pharmacotherapy 131:110734 doi: 10.1016/j.biopha.2020.110734 |
[2] |
Shang X, Cao S, Xiao L, Yan H, Wang Y, et al. 2020. Investigation and collection of Pueraria germplasm resources in Guangxi. Journal of Plant Genetic Resources 21(5):1301−7 doi: 10.13430/j.cnki.jpgr.20200301002 |
[3] |
Shang X, Yan H, Cao S, Xiao L, Wang Y, et al. 2019. Genetic diversity analysis of Pueraria in Guangxi based on SCoT markers. Journal of Nuclear Agricultural Sciences 33(7):1311−17 doi: 10.11869/j.issn.100-8551.2019.07.1311 |
[4] |
Chen C, Zheng L, Ma Q Zhou WB, Lu Y, et al. 2019. Impacts of domestication on population genetics of a traditional Chinese medicinal herb, Atractylodes macrocephala (Asteraceae). Journal of Systematics and Evolution 57(3):222−33 doi: 10.1111/jse.12446 |
[5] |
Chen S, Wu T, Xiao L, Ning D, Li P. 2020b. Genetic diversity of Juglans sigillata Dode germplasm in Yunnan Province, China, as revealed by SSRs. Plant Genetic Resources 18(6):417−26 doi: 10.1017/S1479262120000441 |
[6] |
Ambati D, Phuke RM, Vani V, Sai Prasad SV, Singh JB, et al. 2020. Assessment of genetic diversity and development of core germplasm in durum wheat using agronomic and grain quality traits. Cereal Research Communications 48:375−82 doi: 10.1007/s42976-020-00050-z |
[7] |
Chen C, Chu Y, Ding C, Su X, Huang Q. 2020a. Genetic diversity and population structure of black cottonwood (Populus deltoides) revealed using simple sequence repeat markers. BMC Genetics 21(1):1−12 doi: 10.21203/rs.2.10562/v3 |
[8] |
Pal S, Revadi M, Thontadarya RN, Reddy DCL, Varalakshmi B, et al. 2020. Understanding genetic diversity, population structure and development of a core collection of Indian accessions of watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Plant Genetic Resources 18(5):359−368 doi: 10.1017/S1479262120000386 |
[9] |
Jing X, Xu L, Chen JY, Zeng XQ, Huang ZC, et al. 2010. Genetic diversity of arrowroot (Pueraria L.) varieties revealed by RAPD analysis in Chongqing area. Chinese Agricultural Science Bulletin 26(24):80−82 |
[10] |
Chen D, Peng R, Li L, Zhang X, Wang Y. 2011. Analysis of genetic relationships of Pueraria thomsonii based on SRAP markers. China Journal of Chinese Materia Medica 36(5):538−41 doi: 10.4268/cjcmm20110504 |
[11] |
Guo Y, Cheng C, Huang J, Yang X, Lu J, et al. 2013. ISSR analysis of genetic relationships in Radix Puerariae from different original place. Popular Science & Technology 15(4):134−36 doi: 10.3969/j.issn.1008-1151.2013.04.053 |
[12] |
Zhou J, Jie Y, Du X, Xing H, Xiong L. 2013. RAPD analysis on genetic relationship of Kudzu germplasm resources. Crop Research 27(4):347−50 doi: 10.3969/j.issn.1001-5280.2013.04.12 |
[13] |
Yuan C, Zhong W, Gong Y, Pu D, Ji P, et al. 2017. Genetic diversity and trait association analysis of Pueraria lobata resources. Journal of Plant Genetic Resources 18(2):233−41 doi: 10.13430/j.cnki.jpgr.2017.02.009 |
[14] |
Zhou R, Zhou J, Nan T, Jiang C, Duan HY, et al. 2019. Analysis of genomic SSRs in Pueraria lobata and P. thomsonii and establishment of DNA identity card for different germplasms of P. thomsonii of Jiangxi province. China Journal of Chinese Materia Medica 44(17):3615−21 doi: 10.19540/j.cnki.cjcmm.20190527.106 |
[15] |
Wang W, Wu B, Liu Z, Zhou L, Sun X, et al. 2021. Development of EST-SSRs from the ark shell (Scapharca broughtonii) transcriptome and their application in genetic analysis of four populations. Genes & Genomics 43:669−77 doi: 10.1007/s13258-021-01090-3 |
[16] |
Kim HR, Sa KJ, Nam-Gung M, Park KJ, Ryu SH, et al. 2021. Genetic characterization and association mapping in near-isogenic lines of waxy maize using seed characteristics and SSR markers. Genes & Genomics 43:79−90 doi: 10.1007/s13258-020-01030-7 |
[17] |
Xiao L, Shang X, Cao S, Xie X, Zeng W, et al. 2019. Utilization of simple sequence repeat (SSR) markers developed from a de novo transcriptome assembly in Pueraria thomsonii benth. Acta Botanica Boreali-occidentalia Sinica 39(1):59−67 doi: 10.7606/j.issn.1000-4025.2019.01.0059 |
[18] |
Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2):945−59 doi: 10.1093/genetics/155.2.945 |
[19] |
Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14):1801−6 doi: 10.1093/bioinformatics/btm233 |
[20] |
Evanno GS, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14(8):2611−20 doi: 10.1111/j.1365-294X.2005.02553.x |
[21] |
Earl DA, vonHoldt BM. 2012. Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conservation Genetics Resources 4(2):359−61 doi: 10.1007/s12686-011-9548-7 |
[22] |
Rohlf FJ. 2000. NTSYS pc2.1: Numerical taxonomy and multivariate analysis system version 2.1. New York: Applied Biostatistics Inc. |
[23] |
Thachuk C, Crossa J, Franco J, Dreisigacker S, Warburton M, et al. 2009. Core hunter: an algorithm for sampling genetic resources based on multiple genetic measures. BMC Bioinformatics 10(1):243 doi: 10.1186/1471-2105-10-243 |
[24] |
Verma H, Borah JL, Sarma RN. 2019. Variability assessment for root and drought tolerance traits and genetic diversity analysis of rice germplasm using SSR markers. Scientific Reports 9(1):16513 doi: 10.1038/s41598-019-52884-1 |
[25] |
Gómez-Rodríguez MV, Beuzon C, González-Plaza JJ, Fernández-Ocaña AM. 2021. Identification of an olive (Olea europaea L.) core collection with a new set of SSR markers. Genetic Resources and Crop Evolution 68(1):117−33 doi: 10.1007/s10722-020-00971-y |
[26] |
Adhikari S, Joshi A, Kumar A, Singh NK, Jaiswal JP, et al. 2022. Revealing the genetic diversity of teosinte introgressed maize population by morphometric traits and microsatellite markers. Journal of Plant Biochemistry and Biotechnology 31:720−38 doi: 10.1007/s13562-021-00710-z |
[27] |
Park JY, Ramekar RV, Sa KJ, Lee JK. 2015. Genetic diversity, population structure, and association mapping of biomass traits in maize with simple sequence repeat markers. Genes & Genomics 37:725−35 doi: 10.1007/s13258-015-0309-y |
[28] |
Pappert RA, Hamrick JL, Donovan LA. 2000. Genetic variation in Pueraria lobata (Fabaceae), an introduced, clonal, invasive plant of the southeastern United States. American Journal of Botany 87:1240−45 doi: 10.2307/2656716 |
[29] |
Sruthi K, Divya B, Senguttuvel P, Revathi P, Kemparaju KB, et al. 2020. Evaluation of genetic diversity of parental lines for development of heterotic groups in hybrid rice (Oryza sativa L.). Journal of Plant Biochemistry and Biotechnology 29:236−52 doi: 10.1007/s13562-019-00529-9 |
[30] |
Heider B, Fischer E, Berndl T, Schultze-Kraft, R. 2007. Analysis of genetic variation among accessions of Pueraria montana (Lour.) Merr. var. lobata and Pueraria phaseoloides (Roxb.) Benth. based on RAPD markers. Genetic Resources and Crop Evolution 54:529−42 doi: 10.1007/s10722-006-0009-1 |
[31] |
Ji B, Pei L, Chen S, Dong C, Feng W. 2014. RAPD analysis of germplasm resource in Pueraria lobata. Chinese Journal of Experimental Traditional Medical Formulae 20(6):56−59 doi: 10.13422/j.cnki.syfjx.2014160056 |
[32] |
Oh JS, Sa KJ, Hyun DY, Cho GT, Lee JK. 2020. Assessment of genetic diversity and population structure among a collection of Korean Perilla germplasms based on SSR markers. Genes & Genomics 42(12):1419−30 doi: 10.1007/s13258-020-01013-8 |
[33] |
Jewett DK, Jiang CJ, Britton KO, Sun JH, Tang J. 2003. Characterizing specimens of kudzu and related taxa with RAPDs. Castanea 68:254−60 |
[34] |
Sun JH, Li ZC, Jewett DK, Britton KO, Ye WH, et al. 2005. Genetic diversity of Pueraria lobata (kudzu) and closely related taxa as revealed by inter-simple sequence repeat analysis. Weed Research 45:255−60 doi: 10.1111/j.1365-3180.2005.00462.x |
[35] |
Hoffberg SL, Bentley KE, Lee JB, Myhre KE, Iwao K, et al. 2015. Characterization of 15 microsatellite loci in kudzu (Pueraria montana var. lobata) from the native and introduced ranges. Conservation Genetics Resources 7:403−5 doi: 10.1007/s12686-014-0381-7 |
[36] |
Bentley KE, Mauricio R. 2016. High degree of clonal reproduction and lack of large-scale geographic patterning mark the introduced range of the invasive vine, kudzu (Pueraria montana var. lobata) in North America. American Journal of Botany 103:1499−507 doi: 10.3732/ajb.1500434 |
[37] |
Haynsen MS. 2018. Population Genetics of Pueraria montana var. lobata. Thesis. The George Washington University, US. |
[38] |
Ellstrand NC, Roose ML. 1987. Patterns of genotypic diversity in clonal plant species. American Journal of Botany 74:123−31 doi: 10.1002/j.1537-2197.1987.tb08586.x |
[39] |
Halkett FJ, Simon JC, Balloux FO. 2005. Tackling the population genetics of clonal and partially clonal organisms. Trends in Ecology & Evolution 20:194−201 doi: 10.1016/j.tree.2005.01.001 |
[40] |
Stilwell KL, Wilbur HM, Werth CR, Taylor DR. 2003. Heterozygote advantage in the American chestnut, Castanea dentata (Fagaceae). American Journal of Botany 90:207−13 doi: 10.3732/ajb.90.2.207 |
[41] |
Ge XJ, Liu MH, Wang WK, Schaal BA, Chiang TY. 2005. Population structure of wild bananas, Musa balbisiana, in China determined by SSR fingerprinting and cpDNA PCR-RFLP. Molecular Ecology 14(4):933−44 doi: 10.1111/j.1365-294X.2005.02467.x |
[42] |
Kiran BU, Mukta N, Kadirvel P, Alivelu K, Senthilvel S, et al. 2017. Genetic diversity of safflower (Carthamus tinctorius L.) germplasm as revealed by SSR markers. Plant Genetic Resources 5(1):1−11 doi: 10.1017/S1479262115000295 |
[43] |
Singh M, Bisht IS, Kumar S, Dutta M, Bansal KC, et al. 2014. Global wild annual Lens collection: a potential resource for lentil genetic base broadening and yield enhancement. PLoS ONE 9:e107781 doi: 10.1371/journal.pone.0107781 |
[44] |
Nie X, Wang Z, Liu N, Song L, Yan B, et al. 2021. Fingerprinting 146 Chinese chestnut (Castanea mollissima Blume) accessions and selecting a core collection using SSR markers. Journal of Integrative Agriculture 20(5):1277−86 doi: 10.1016/S2095-3119(20)63400-1 |
[45] |
Liu F, Zhang N, Liu X, Yang Z, Jia H, et al. 2019. Genetic diversity and population structure analysis of Dalbergia Odorifera germplasm and development of a core collection using microsatellite markers. Genes 10(4):281 doi: 10.3390/genes10040281 |
[46] |
Liu Y, Geng Y, Xie X, Zhang P, Hou J, et al. 2020. Core collection construction and evaluation of the genetic structure of Glycyrrhiza in China using markers for genomic simple sequence repeats. Genetic Resources and Crop Evolution 67(7):1839−52 doi: 10.1007/s10722-020-00944-1 |
[47] |
Miyatake K, Shinmura Y, Matsunaga H, Fukuoka H, Saito T. 2019. Construction of a core collection of eggplant (Solanum melongena L.) based on genome-wide SNP and SSR genotypes. Breeding Science 69(3):498−502 doi: 10.1270/jsbbs.18202 |
[48] |
Li C, Wu J, Li Q, Yang Y, Zhang K. 2022. Development of simple sequence repeat markers from functional genes and establishment of molecular identity for tree peony. Journal of Plant Biochemistry and Biotechnology 31:22−36 doi: 10.1007/s13562-021-00651-7 |
[49] |
Wu DL, Thulin M. 2010. Flora of China. Vol. 10. Beijing: Science Press. pp. 244–48. |
[50] |
Lackey JA. 1977. A synopsis of the Phaseoleae (Leguminosae, Papilionoideae). Thesis. Iowa State University, US. https://doi.org/10.31274/rtd-180813-2256 |
[51] |
van der Maesen LJG. 1985. Revision of the genus Pueraria DC. with some notes on Teyleria Backer (Leguminiosae). Thesis. Agricultural University of Wageningen, Netherlands. pp. 1–132 |
[52] |
Stefanović S, Pfeil BE, Palmer JD, Doyle JJ. 2009. Relationships among phaseoloid legumes based on sequences from eight chloroplast regions. Systematic Botany 34:115−28 doi: 10.1600/036364409787602221 |
[53] |
Egan AN, Vatanparast M, Cagle W. 2016. Parsing polyphyletic Pueraria: Delimiting distinct evolutionary lineages through phylogeny. Molecular Phylogenetics and Evolution 104:44−59 doi: 10.1016/j.ympev.2016.08.001 |
[54] |
Zeng M, Yan J, Zhang H, Zheng S, Su Z. 2000. Classification and authentication of plant Pueraria DC in China using RAPD. Chinese Traditional and Herbal Drugs 31(8):620−22 doi: 10.3321/j.issn:0253-2670.2000.08.034 |
[55] |
Zeng M, Ma Y, Zheng S, Xu J, Di X. 2003. Studies on ribosomal DNA sequence analyses of Radix puerariae and its sibling species. Chinese Pharmaceutical Journal 38(3):173−75 doi: 10.3321/j.issn:1001-2494.2003.03.005 |
[56] |
Kimura M, Crow J. 1964. The number of alleles that can be maintained in a finite population. Genetics 49:725−38 doi: 10.1093/genetics/49.4.725 |
[57] |
Lewontin RC . 1972. The apportionment of human diversity. In Evolutionary Biology, eds: Dobzhansky T, Hecht MK, Steere WC. New York: Springer. pp. 381–98. https://doi.org/10.1007/978-1-4684-9063-3_14 |