[1]

García-González DL, Aparicio-Ruiz R, Aparicio R. 2008. Virgin olive oil-Chemical implications on quality and health. European Journal of Lipid Science and Technology 110(7):602−7

doi: 10.1002/ejlt.200700262
[2]

Murphy DJ, Goggin K, Paterson RRM. 2021. Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience 2(1):1−22

doi: 10.1186/s43170-021-00058-3
[3]

Kaftan A, Elmaci Y. 2011. Aroma characterization of virgin olive oil from two Turkish olive varieties by SPME/GC/MS. International Journal of Food Properties 14(5):1160−69

doi: 10.1080/10942910903453371
[4]

Wu LH, Bai XP, Zhang YZ, Liu J, Li YM, et al. 2016. Vacuum microwave-ultrasound-assisted enzymatic extraction of virgin coconut oil. China Oils and Fats 41(8):5−10

doi: 10.3969/j.issn.1003-7969.2016.08.002
[5]

Deen A, Visvanathan R, Wickramarachchi D, Marikkar N, Nammi S, et al. 2021. Chemical composition and health benefits of coconut oil: an overview. Journal of the Science of Food and Agriculture 101(6):2182−93

doi: 10.1002/jsfa.10870
[6]

Kardinasari E, Devriany A. 2020. Phytochemical identification of bangka origin virgin green coconut oil: Anti-inflammatory and anti-bacterial potential. Enfermería Clínica 30:171−74

doi: 10.1016/j.enfcli.2019.10.062
[7]

Su MH, Shih MC, Lin KH. 2014. Chemical composition of seed oils in native Taiwanese Camellia species. Food Chemistry 156:369−73

doi: 10.1016/j.foodchem.2014.02.016
[8]

Wang RW. 2023. Production, marketing, import and export of grain and oil in China in 2022. China Oils and Fats 48(6):1−7

doi: 10.19902/j.cnki.zgyz.1003-7969.230101
[9]

Yang Q, Tang J, Zhou GY. 2021. Characterization of Diaporthe species on Camellia oleifera in Hunan Province, with descriptions of two new species. Mycokeys 84:15−33

doi: 10.3897/mycokeys.84.71701
[10]

Xia EH, Jiang JJ, Huang H, Zhang LP, Zhang HB, et al. 2014. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism. PLoS ONE 9(8):e104150

doi: 10.1371/journal.pone.0104150
[11]

Chen H, Chen H, Hu L, Wang L, Wang S, et al. 2017. Genetic diversity and a population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L.) Walp.] germplasm collection. The Crop Journals 4(2):363−72

doi: 10.1016/j.cj.2017.04.002
[12]

Calvo P, Lozano M, Espinosa-Mansilla A, González-Gómez D. 2012. In-vitro evaluation of the availability of ϖ-3 and ϖ-6 fatty acids and tocopherols from microencapsulated walnut oil. Food research international 48(1):316−21

doi: 10.1016/j.foodres.2012.05.007
[13]

Xu Y, Huang L, Li JH, Deng Y, Zhang JG, et al. 2022. Identification and genetic diversity analysis of olive cultivars in Longnan based on phenotype and SSR markers. Forest Research 35(4):33−43

doi: 10.13275/j.cnki.lykxyj.2022.004.004
[14]

Wang CZ, Chen Q, Luo JJ, Bai XY, Wang Y, et al. 2013. Development and Industrial Prospect of China's Olive. Biomass Chemical Engineering 47(2):41−46

doi: 10.3969/j.issn.1673-5854.2013.02.009
[15]

Sun J, Guo H, Liu M, Chen M, Zhu M, et al. 2022. Histology and transcriptomic profiling reveal the dynamics of seed coat and endosperm formation in tree peony (Paeonia ostii). Horticulture Research 9:uhac106

doi: 10.1093/hr/uhac106
[16]

Han J, Liu Z, Li X, Li J, Hu Y. 2016. Diversity in seed oil content and fatty acid composition in three tree peony species with potential as sources of omega-3 fatty acids. The Journal of Horticultural Science and Biotechnology 91(2):175−79

doi: 10.1080/14620316.2015.1133538
[17]

Wang MK, Meng NT, Bi QX, Liu XJ, Yu HY, et al. 2021. Evaluation of drought tolerance based on stomatal characters and selection of germplasm resources from Xanthoceras sorbifolia. Bulletin of Botanical Research 41(6):957−64

doi: 10.7525/j.issn.1673-5102.2021.06.014
[18]

Zhang S, Zu YG, Fu YJ, Luo M, Liu W, et al. 2010. Supercritical carbon dioxide extraction of seed oil from yellow horn (Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity. Bioresource technology 101(7):2537−44

doi: 10.1016/j.biortech.2009.11.082
[19]

Guo X, Wang R, Chang R, Liang X, Wang C, et al. 2014. Effects of nitrogen addition on growth and photosynthetic characteristics of Acer truncatum seedlings. Dendrobiology 72:151−61

doi: 10.12657/denbio.072.013
[20]

Wang XY, Fan JS, Wang SQ. 2006. Development situation and outlook of nervonic acid plants in China. China Oils and Fats 31(3):69−71

doi: 10.3321/j.issn:1003-7969.2006.03.025
[21]

Ruiz del Castillo ML, Gómez Caballero E, Blanch GP, Herraiz Maballero E. 2002. Enantiomeric composition of filbertone in hazelnuts and hazelnut oils from different geographical origins. Journal of the American Oil Chemists Society 79(6):589−92

doi: 10.1007/s11746-002-0527-1
[22]

Geng PF, Liu JW, Hu CR, Liu LY, He DP. 2018. Comparison of three extraction method of hazelnut oil and optimization of its supercritical CO2 extraction process. China Oils and Fats 43(5):7−10+15

doi: 10.3969/j.issn.1003-7969.2018.05.002
[23]

Li, L, Yang Q, Li H. 2021. Morphology, phylogeny, and pathogenicity of pestalotioid species on Camellia oleifera in China. Journal of Fungi 7(12):1080

doi: 10.3390/jof7121080
[24]

Shen Z, Zhang K, Ma L, Duan J, Ao Y. 2017. Analysis of the genetic relationships and diversity among 11 populations of Xanthoceras sorbifolia using phenotypic and microsatellite marker data. Electronic Journal of Biotechnology 26:33−39

doi: 10.1016/j.ejbt.2016.12.008
[25]

Fan Y, Lin F, Zhang R, Wang M, Gu R, et al. 2022. Acer truncatum Bunge: A comprehensive review on ethnobotany, phytochemistry and pharmacology. Journal of Ethnopharmacology 282:114572

doi: 10.1016/j.jep.2021.114572
[26]

Şahİn S, Tonkaz T, Yarilgaç T. 2022. Chemical composition, antioxidant capacity and total phenolic content of hazelnuts grown in different countries. Journal of Tekirdag Agriculture Faculty-Tekirdag Ziraat Fakultesi Dergisi 19(2):262−70

doi: 10.33462/jotaf.893244
[27]

Wang H, Song F, Cao FY, Chen WJ, Zhao SL. 2014. Analysis of nutrition and functional composition in palm oil. Chinese Journal of Tropical Agriculture 34(6):71−74

doi: 10.3969/j.issn.1009-2196.2014.06.017
[28]

Tu XH, Du LQ, Wei F, Lv X, Huang FH, et al. 2019. A review on seven tropical woody oil crops in China. Chinese Journal of Tropical Agriculture 39(4):114−22

[29]

Zhang H, Gao P, Mao Y, Dong J, Zhong W, et al. 2023. Physicochemical study of Camellia oleifera Abel. seed oils produced using different pretreatment and processing methods. LWT 173:114396

doi: 10.1016/j.lwt.2022.114396
[30]

Ferro MD, Cabrita MJ, Herrera JM, Duarte MF. 2023. A new laboratory scale olive oil extraction method with comparative characterization of phenolic and fatty acid composition. Foods 12(2):380

doi: 10.3390/foods12020380
[31]

Ouzir M, Bernoussi SE, Tabyaoui M, Taghzouti K. 2021. Almond oil: A comprehensive review of chemical composition, extraction methods, preservation conditions, potential health benefits, and safety. Comprehensive Reviews in Food Science and Food Safety 20(4):3344−87

doi: 10.1111/1541-4337.12752
[32]

Penagos-Calvete D, Duque V, Marimon C, Parra DM, Restrepo-Arango SK, et al. 2019. Glycerolipid composition and advanced physicochemical considerations of sacha inchi oil toward cosmetic products formulation. Cosmetics 6(4):70

doi: 10.3390/cosmetics6040070
[33]

Zhao JJ, Tian G, Jiang TY, Lei MD, Sun KW, et al. 2021. Supercritical CO2 fluid extraction of peony seed oil. Journal of the Chinese Cereals and Oils Association 36(01):131−135+154

doi: 10.3969/j.issn.1003-0174.2021.01.022
[34]

Gao P, Jin J, Liu R, Jin Q, Wang X. 2018. Chemical compositions of walnut (Juglans regia L.) oils from different cultivated regions in China. Journal of the American Oil Chemists' Society 95(7):825−834

doi: 10.1002/aocs.12097
[35]

Chang YM, Zhang CH, Liu YC. 2009. Study on the fatty acid composition of the seed oil of Xanthoceras sorbiflia and its property. Shanxi Forestry Science and Technology 38(3):37−39

doi: 10.3969/j.issn.1007-726X.2009.03.012
[36]

Qiao Q, Xue W, Feng Z. 2018. Variability of seed oil content, fatty acid composition, and nervonic acid content in Acer truncatum, native to 14 regions of China. Grasas y Aceites 69(4):e274

doi: 10.3989/gya.0465181
[37]

Zeb A. 2021. A comprehensive review on different classes of polyphenolic compounds present in edible oils. Food Research International 143:110312

doi: 10.1016/j.foodres.2021.110312
[38]

Wang D, Wang T, Zhang Z, Li Z, Guo Y, et al. 2022. Recent advances in the effects of dietary polyphenols on inflammation in vivo: Potential molecular mechanisms, receptor targets, safety issues, and uses of nanodelivery system and polyphenol polymers. Current Opinion in Food Science 48:100921

doi: 10.1016/j.cofs.2022.100921
[39]

Li JK, Meng YH, Liu L, Wang XY, Wang XL, et al. 2021. Utilization of food industry by-products in China. Journal of Food Science and Technology 39(6):1−13

doi: 10.12301/j.issn.2095-6002.2021.06.001
[40]

Liu GY, Li ST, Liang L, Zhu WQ, Zhou WL, et al. 2022. Effect of phenolic compounds in different forms extracted from oil-tea camellia seed oil on oil oxidative stability. China Oil and Fats 47(2):85−90+117

doi: 10.19902/j.cnki.zgyz.1003-7969.210140
[41]

Wei Z, Yang KZ, Luan X, Li XJ, Duan ZQ, et al. 2021. Optimization of free characteristic phenolic and total phenol from Camellia oleifera seed oils by response surface methodology. Journal of the Chinese Cereals and Oils Association 36(11):116−22

doi: 10.3969/j.issn.1003-0174.2021.11.018
[42]

Liu G, Zhu W, Li S, Zhou W, Zhang H, et al. 2022. Antioxidant capacity and interaction of endogenous phenolic compounds from tea seed oil. Food Chemistry 376:131940

doi: 10.1016/j.foodchem.2021.131940
[43]

Yu L. 2022. Characterization, antioxidant properties, and discrimination of Chinese olive oils. Thesis. Jiangnan University, China. pp. 36−54.

[44]

Zhou ZT, Gao P, Zhang JZ, He DP. 2020. Chemical composition and oxidation stability index of walnut oils from different production regions in China. Science and Technology of Cereals, Oils and Foods 28(1):17−22

doi: 10.16210/j.cnki.1007-7561.2020.01.004
[45]

Wang Y, Zhou B, Zhong HY. 2014. Content of phenol and antioxidant ability of apricot kernel oil under different pretreatment. Food and Machinery 30(6):149−52

doi: 10.13652/j.issn.1003-5788.2014.06.037
[46]

Han XY. 2016. Analysis of fatty acid and other functional components in tree peony seed oil. Thesis. Northwest Agriculture & Forestry University, China. pp. 13−29.

[47]

Mao YY, Han JG, Tian F, Tang X, Hu YH, et al. 2017. Chemical composition analysis, sensory, and feasibility study of tree peony seed. Journal of Food Science 82(2):553−61

doi: 10.1111/1750-3841.13593
[48]

Li MQ, Wu Y, Sun Q, Chen J, Wang F, et al. 2012. Research progress of Peony Seed. Natural Product Research and Development 24(S1):182−84

doi: 10.16333/j.1001-6880.2012.s1.039
[49]

Cheung CL, Ho DKC, Sing CW, Tsoi MF, Cheng VKF, et al. 2017. Randomized controlled trial of the effect of phytosterols-enriched low-fat milk on lipid profile in Chinese. Scientific reports 7(1):41084

doi: 10.1038/srep41084
[50]

Hu Q, Zhuo Z, Fang S, Zhang Y, Jie F. 2017. Phytosterols improve immunity and exert anti-inflammatory activity in weaned piglets. Journal of the Science of Food and Agriculture 97(12):4103−4109

doi: 10.1002/jsfa.8277
[51]

Pierre Luhata L, Usuki T. 2021. Antibacterial activity of β-sitosterol isolated from the leaves of Odontonema strictum (Acanthaceae). Bioorganic & Medicinal Chemistry Letters 48:128248

doi: 10.1016/j.bmcl.2021.128248
[52]

Liu R, Xu Y, Chang M, Tang L, Lu M, et al. 2021. Antioxidant interaction of α-tocopherol, γ-oryzanol and phytosterol in rice bran oil. Food Chemistry 343:128431

doi: 10.1016/j.foodchem.2020.128431
[53]

Garcia-Llatas G, Alegría A, Barberá R, Cilla A. 2021. Current methodologies for phytosterol analysis in foods. Microchemical Journal 168:106377

doi: 10.1016/j.microc.2021.106377
[54]

Jia WC, Fang EH, Wu YF, Xu DM, Wang XQ. 2021. Speciation analysis of phytosterols in camellia seed oil and their dynamic changes during refining and storage. Food Science 42(16):39−45

doi: 10.7506/spkx1002-6630-20200709-131
[55]

Krichène D, Allalout A, Salvador MD, Fregapane G, Zarrouk M. 2010. Fatty acids, volatiles, sterols and triterpenic alcohols of six monovarietal Tunisian virgin olive oils. European journal of lipid science and technology 112(3):400−9

doi: 10.1002/ejlt.200900095
[56]

Gao Y, Wang BK, Xue F, Guan YN, Chen DD. 2023. Advance on the extraction, nutritional composition and health benefit of almond oil. Food and Machinery 39(5):232−40

doi: 10.13652/j.spjx.1003.5788.2022.80853
[57]

Wang W, Wang HL, Xiao XZ, Xu XQ. 2019. Chemical composition analysis of seed oil from five wild almond species in China as potential edible oil resource for the future. South African Journal of Botany 121:274−81

doi: 10.1016/j.sajb.2018.11.009
[58]

Fan YK, Xiang T, Wang W, Shen JF. 2018. Research progress on nutrients and processing technology of peony seed oil. Food & Machinery 34(10):196−201

doi: 10.13652/j.issn.1003-5788.2018.10.039
[59]

Wang Y, Ji SJ, Mao WY, Wang SS, Cui T. 2012. Measurement of the non-saponifiable matters and octacosanol in peony seed oil and sunflower seed wax by gas chromatography-mass spectrometry (GC-MS) method. Journal of Agricultural University of Hebei 35(4):104−7

[60]

Liu YL, Guo YY. 2020. Study on comprehensive quality of Xanthoceras sorbifolia Bunge oil from different producing areas and different processes. Cereals and Oils 33(6):1−6

[61]

Cheng M. 2021. Effects of refining process on the quality of Acer truncatum seed oil. China Oils and Fats 46(8):16−19

doi: 10.19902/j.cnki.zgyz.1003-7969.200740
[62]

Farràs M, Almanza-Aguilera E, Hernáez Á, Agustí N, Julve J, et al. 2021. Beneficial effects of olive oil and Mediterranean diet on cancer physiopathology and incidence. Seminars in Cancer Biology 73:178−95

doi: 10.1016/j.semcancer.2020.11.011
[63]

Ibrahim NI, Fairus S, Zulfarina MS, Naina Mohamed I. 2020. The efficacy of squalene in cardiovascular disease risk-a systematic review. Nutrients 12(2):414

doi: 10.3390/nu12020414
[64]

Zhang DS, Xue YL, Jin QZ, Wang XG, Zhang D, et al. 2013. Determination of squalene in oil-tea camellia seed oil. China Oils and Fats 38(11):85−88

[65]

Wu LH, Zhao JJ, Wu LM, Li G, Li ZK. 2021. Determination of squalene in vegetable oil by gas chromatography-mass spectrometry with rapid saponification-neutral alumina chromatographic purification. China Oils and Fats 46(10):132−36

doi: 10.19902/j.cnki.zgyz.1003-7969.200588
[66]

Jin CA, Wang RC, Wang XY, Jin ML, Wang YF, et al. 2022. Comparison of 37 fatty acids and squalene in walnut oil and common vegetable oils. Science and Technology of Food Industry 43(12):261−67

doi: 10.13386/j.issn1002-0306.2021090043
[67]

Luo YH, Huang MG, Qiu JR, Li YJ. 2022. Determination of squalene in almond oil by water bath saponification combined with gas chromatography-mass spectrometry. Guangdong Chemical Industry 49(15):173−175+172

doi: 10.3969/j.issn.1007-1865.2022.15.060
[68]

Zhang D, Xue YL, Duan ZQ, Li XJ, Zhu L, et al. 2017. Analysis and comparison of chemical composition in peony seed oil and flaxseed oil. China Oils and Fats 42(10):34−38

doi: 10.3969/j.issn.1003-7969.2017.10.008
[69]

Wu LM, Zhao JJ, Cai JW, Wu LH, Zhang YH, et al. 2022. The types, contents and health function of fat concomitants in edible vegetable oils. Journal of Henan University of Technology (Natural Science Edition) 43(6):10−18+29

doi: 10.16433/j.1673-2383.2022.06.002
[70]

Liu YL, Peng TE, Ma YX. 2010. Determination of tocopherols and tocotrienols in rice bran oil and the by-product deodorizer distillate. China Oils and Fats 35(3):70−74

[71]

Wang LX, Luo F, Guo SH, Yao XH, Zhong HY. 2020. Effects of microwave and infrared radiation treatment of oil-tea camellia seeds on VE content in pressed oil-tea camellia seed oil. China Oils and Fats 45(3):58−61

doi: 10.12166/j.zgyz.1003-7969/2020.03.013
[72]

Zhang D, Xue YL, Zhu L, Xu R, Chai J. 2017. Olive and virgin olive oil quality analysis in China. Journal of the Chinese Cereals and Oils Association 32(2):88−93

doi: 10.3969/j.issn.1003-0174.2017.02.015
[73]

Kodad O, Estopañán G, Juan T, Mamouni A, Company RSI. 2011. Tocopherol concentration in almond oil: Genetic variation and environmental effects under warm conditions. Journal of Agricultural and Food Chemistry 59(11):6137−41

doi: 10.1021/jf200323c
[74]

Mao CX, Li GH, Li PX, Zhu P, Kang XM. 2014. Analysis of triglycerides composition structure and physicochemical properties of peony seed oil. Modern Food Science and Technology 30(4):142−46

doi: 10.13982/j.mfst.1673-9078.2014.04.008
[75]

Yang XQ, Xie XF, Meng XY, Ding B, Cheng S, et al. 2022. Analysis and comparison of nutritional composition and fatty acid composition between Xanthoceras sorbifolia oil and common edible oil. Shandong Forestry Science and Technology 52(2):42−46

doi: 10.3969/j.issn.1002-2724.2022.02.009
[76]

Tong YX, Xu JM, Chen F, Yin ZX, Liu N, et al. 2022. Advance in chemical components and products application status of Acer truncatum Bunge. China Oils and Fats 47(2):118−23

doi: 10.19902/j.cnki.zgyz.1003-7969.210092
[77]

Qiao Q, Wang X, Ren H, An K, Feng Z, et al. 2019. Oil content and nervonic acid content of Acer truncatum seeds from 14 regions in China. Horticultural Plant Journal 5(1):24−30

doi: 10.1016/j.hpj.2018.11.001
[78]

Tu XH, Wan JY, Xie Y, Wei F, Quek S, et al. 2020. Lipid analysis of three special nervonic acid resources in China. Oil Crop Science 5(4):180−86

doi: 10.1016/j.ocsci.2020.12.004
[79]

Li ZG, Ma L, Chen YZ, Peng SF, Peng YH, et al. 2017. Cold-pressing technology of oil-tea Camellia. Hunan Forestry Science & Technology 44(4):92−95

doi: 10.3969/j.issn.1003-5710.2017.04.019
[80]

He ZH, Zhan RC, Jiang SJ, Yu WL, Ding DG, et al. 2018. Study on key techniques for cold pressing pretreatment of Camellia oleifera seed and its application. Journal of Zhejiang Agricultural Sciences 59(5):728−30

doi: 10.16178/j.issn.0528-9017.20180517
[81]

Li WG, Sun XL, Zu YG, Zhao XH. 2020. Optimization peony seed oil extraction process at suitable temperature and physicochemical property analysis. Bulletin of Botanical Research 40(1):73−78

doi: 10.7525/j.issn.1673-5102.2020.01.011
[82]

Deng H, Sun J, Fan XC, Wen HB. 2007. Comparison of different extraction technologies for seed oil of Xanthoceras sorbifolia Bunge. Journal of Northeast Forestry University 35(10):39−41

doi: 10.3969/j.issn.1000-5382.2007.10.015
[83]

Ma L, Chen YZ, Zhong HY, Zhou B, Peng SF, et al. 2016. The effect of techniques on quality of oil-tea camellia seed oil. Journal of Southwest Forestry University 36(6):164−69

[84]

Yang M, Liu CS, Zhou Q, Zheng C, Huang FH. 2010. Processing effects on volatile flavor composition of rapeseed oil. Chinese Journal of Oil Crop Sciences 32(4):551−57

[85]

Qin YC, Liu BT, Xue JS, Wang LL, Yang L, et al. 2020. Study on quality difference of hot-pressed and cold-pressed camellia oil. Journal of the Chinese Cereals and Oils Association 35(5):97−104

[86]

Li CM, Zhang YB, Li S, Deng YY, Xu C, et al. 2015. Mechanism of formation of trans-fatty acids. Journal of the Chinese Cereals and Oils Association 30(7):141−46

doi: 10.3969/j.issn.1003-0174.2015.07.027
[87]

Yang JY, Chen F, Song LW, Hu R, Deng ZY. 2016. Research progress on extraction technology of camellia oil. Food and Machinery 32(2):183−87

doi: 10.13652/j.issn.1003-5788.2016.02.044
[88]

Guo X, Peng YX, Hu CR, He DP, Liu LY. 2017. Effects of different oil producing processes on characteristics and quality of Xanthoceras sorbifolia Bunge. oil. China Oils and Fats 42(9):8−13

doi: 10.3969/j.issn.1003-7969.2017.09.002
[89]

Tang ZJ, Li Y, Dong XR, Zhou BL, Yang C. 2012. Study on extraction of residual oil in defatted cake of camellia using ethanol as solvent. Chemistry & Bioengineering 29(5):60−63

doi: 10.3969/j.issn.1672-5425.2012.05.017
[90]

Cao WC, Wang YJ, Shehzad Q, Liu ZY, Zeng RJ. 2022. Effect of different solvents on the extraction of oil from peony seeds (Paeonia suffruticosa Andr.): Oil yield, fatty acids composition, minor components, and antioxidant capacity. Journal of Oleo Science 71(3):333−42

doi: 10.5650/jos.ess21274
[91]

Lv SY, Ma TJ. 2023. Process optimization for the solvent extraction of Xanthoceras sorbifolia Bunge oil. Journal of Beijing University of Agriculture 38(01):97−101

doi: 10.13473/j.cnki.issn.1002-3186.2023.0116
[92]

Shi XF, Ren LM. 2016. Research advance on preparation of peony seed oil by supercritical carbon dioxide extraction. Grain Processing 41(6):47−54

[93]

Huang CL. 2012. The Supercritical carbon dioxide extraction and functional quality evaluation of Camellia seed oil. Thesis. Changsha University of Science and Technology, China. pp. 9−19.

[94]

Wang YL, Zhao WY, Liu SY, Wang Y. 2014. Supercritical extraction and fatty acid composition of seed oil in Xanthoceras sorbifolia. Nonwood Forest Research 32(1):135−39

doi: 10.14067/j.cnki.1003-8981.2014.01.030
[95]

Meng XH, Pan QY. 2009. Perspectives on oleochemical industry using supercritical carbon dioxide. Food and Fermentation Industries 35(10):113−18

[96]

Zhang S, Pan Y, Zheng L, Yang Y, Zheng X, et al. 2019. Application of steam explosion in oil extraction of camellia seed (Camellia oleifera Abel.) and evaluation of its physicochemical properties, fatty acid, and antioxidant activities. Food Science and Nutrition 7(3):1004−16

doi: 10.1002/fsn3.924
[97]

Liang ZH, Li HR, Zhu HY, Li P, Chen HX, et al. 2021. The technological condition of ultrasonic-assisted ethanol extraction of camellia seed oil. The Food Industry 42(9):1−4

[98]

Lin X, Yi X, Ni S. 2021. Optimization of ultrasonic-assisted extraction and fatty acid composition of oil from Paeonia suffruticosa Andr. seed. Journal of Oleo Science 70(1):39−49

doi: 10.5650/jos.ess20206
[99]

He YY, Lv XX. 2021. Ultrasonic microwave synergistic extraction of peony seed oil. The Food Industry 42(8):102−5

[100]

Guerrero-Casado J, Carpio AJ, Tortosa FS, Villanueva AJ. 2021. Environmental challenges of intensive woody crops: The case of super high-density olive groves. Science of the Total Environment 798:149212

doi: 10.1016/j.scitotenv.2021.149212
[101]

Paterson RRM, Moen S, Lima N. 2009. The feasibility of producing oil palm with altered lignin content to control Ganoderma disease. Journal of Phytopathology 157(11−12):649−56

doi: 10.1111/j.1439-0434.2009.01553.x
[102]

Ye C, He Z, Peng J, Wang R, Wang X, et al. 2023. Genomic and genetic advances of oil tea-camellia (Camellia oleifera). Frontiers in Plant Science 14:1101766

doi: 10.3389/fpls.2023.1101766
[103]

Jiang X, Zhao JP, Liu P, Wang K, Xu JM, et al. 2022. Research progress of fatty acid composition, purification and application of woody oil. Biomass Chemical Engineering 56(2):60−68

doi: 10.3969/j.issn.1673-5854.2022.02.009
[104]

Qiao SM, Wang Y, Wu P. 2023. Research progress of peony seed oil. China Fruit & Vegetable 43(2):24−29+50

doi: 10.19590/j.cnki.1008-1038.2023.02.004
[105]

Ma XY, Zhao YH, Liu HM. 2021. Progress in efficacy of natural vegetable oils in sunscreen cosmetics. China Oils and Fats 46(1):71−75

doi: 10.19902/j.cnki.zgyz.1003-7969.2021.01.014
[106]

Zhang QH, Ma WJ, Liang XH, Xiao L, Cheng M. 2021. Optimization of formula and characterization of peony seed oil-fish oil microcapsules. China Food Additives 32(6):55−63

doi: 10.19804/j.issn1006-2513.2021.06.009
[107]

Shi P, Chang YM. 2015. Quality evaluation and comprehensive development and utilization of walnut oil. Shanxi Forestry Science and Technology 44(1):37−40

doi: 10.3969/j.issn.1007-726X.2015.01.011
[108]

Jiang QD, Wang JG. 2011. Application field and development prospect of Xanthoceras sorbifolia Bunge. Gansu Science and Technology 27(15):134−35

doi: 10.3969/j.issn.1000-0952.2011.15.056
[109]

Ao Y, Duan J, Yu HY, Jiang CY, Ma LY. 2012. Research progress on Xanthoceras sorbifolia Bunge. Journal of China Agricultural University 17(6):197−203

[110]

Wang XY. 2013. High quality raw material of cosmetics industry-Acer truncatum Bunge. seed oil. China Oils and Fats 38(7):5−7

doi: 10.3969/j.issn.1003-7969.2013.07.002
[111]

Wang XY, Xie SJ, Wang GH. 2018. Application research status and prospect of Acer truncatum Bunge. seed oil rich in nervonic acid in China. China Oils and Fats 43(12):93−95+104

doi: 10.3969/j.issn.1003-7969.2018.12.021
[112]

Boateng L, Ansong R, Owusu WB, Steiner-Asiedu M. 2016. Coconut oil and palm oil’s role in nutrition, health and national development: A review. Ghana Medical Journal 50(3):189−96

doi: 10.4314/gmj.v50i3.11