[1]

Nojima T, Proudfoot NJ. 2022. Mechanisms of lncRNA biogenesis as revealed by nascent transcriptomics. Nature Reviews Molecular Cell Biology 23:389−406

doi: 10.1038/s41580-021-00447-6
[2]

DeOcesano-Pereira C, Machado RAC, Chudzinski-Tavassi AM, Sogayar MC. 2020. Emerging roles and potential applications of non-coding RNAs in glioblastoma. International Journal of Molecular Sciences 21:2611

doi: 10.3390/ijms21072611
[3]

Beneventi G, Munita R, Cao Thi Ngoc P, Madej M, Cieśla M, et al. 2021. The small Cajal body-specific RNA 15 (SCARNA15) directs p53 and redox homeostasis via selective splicing in cancer cells. NAR Cancer 3:zcab026

doi: 10.1093/narcan/zcab026
[4]

Lee CH, Carroll BJ. 2018. Evolution and diversification of small RNA pathways in flowering plants. Plant and Cell Physiology 59:2169−87

doi: 10.1093/pcp/pcy167
[5]

Catalanotto C, Cogoni C, Zardo G. 2016. MicroRNA in control of gene expression: an overview of nuclear functions. International Journal of Molecular Sciences 17:1712

doi: 10.3390/ijms17101712
[6]

Mittal D, Sharma N, Sharma V, Sopory SK, Sanan-Mishra N. 2016. Role of microRNAs in rice plant under salt stress. Annals of Applied Biology 168:2−18

doi: 10.1111/aab.12241
[7]

Song X, Li Y, Cao X, Qi Y. 2019. MicroRNAs and their regulatory roles in plant–environment interactions. Annual Review of Plant Biology 70:489−525

doi: 10.1146/annurev-arplant-050718-100334
[8]

Yu Y, Zhang Y, Chen X, Chen Y. 2019. Plant noncoding RNAs: hidden players in development and stress responses. Annual Review of Cell and Developmental Biology 35:407−31

doi: 10.1146/annurev-cellbio-100818-125218
[9]

Jampala P, Garhewal A, Lodha M. 2021. Functions of long non-coding RNA in Arabidopsis thaliana. Plant Signaling & Behavior 16:1925440

doi: 10.1080/15592324.2021.1925440
[10]

Qiu Y, Li P, Zhang Z, Wu M. 2021. Insights into exosomal non-coding RNAs sorting mechanism and clinical application. Frontiers in Oncology 11:664904

doi: 10.3389/fonc.2021.664904
[11]

Samad AFA, Sajad M, Nazaruddin N, Fauzi IA, Murad AMA, et al. 2017. MicroRNA and transcription factor: key players in plant regulatory network. Frontiers in Plant Science 8:565

doi: 10.3389/fpls.2017.00565
[12]

Sun D, Zhang J, He J, Geng Z, Li S, et al. 2022. Whole-transcriptome profiles of Chrysanthemum seticuspe improve genome annotation and shed new light on mRNA–miRNA–lncRNA networks in ray florets and disc florets. BMC Plant Biology 22:515

doi: 10.1186/s12870-022-03889-y
[13]

Odintsova TI, Slezina MP, Istomina EA. 2020. Defensins of grasses: a systematic review. Biomolecules 10:1029

doi: 10.3390/biom10071029
[14]

Moreau C, Gautrat P, Frugier F. 2021. Nitrate-induced CLE35 signaling peptides inhibit nodulation through the SUNN receptor and miR2111 repression. Plant Physiology 185:1216−28

doi: 10.1093/plphys/kiaa094
[15]

Poutanen KS, Kårlund AO, Gómez-Gallego C, Johansson DP, Scheers NM, et al. 2022. Grains – a major source of sustainable protein for health. Nutrition Reviews 80:1648−63

doi: 10.1093/nutrit/nuab084
[16]

Li M, Yu B. 2021. Recent advances in the regulation of plant miRNA biogenesis. RNA Biology 18:2087−96

doi: 10.1080/15476286.2021.1899491
[17]

Modepalli V, Fridrich A, Agron M, Moran Y. 2018. The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis. PLoS Genetics 14:e1007590

doi: 10.1371/journal.pgen.1007590
[18]

Yu Y, Jia T, Chen X. 2017. The 'how' and 'where' of plant microRNAs. New Phytologist 216:1002−17

doi: 10.1111/nph.14834
[19]

Treiber T, Treiber N, Meister G. 2019. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews Molecular Cell Biology 20:5−20

doi: 10.1038/s41580-018-0059-1
[20]

Iwakawa HO, Tomari Y. 2013. Molecular insights into microRNA-mediated translational repression in plants. Molecular Cell 52:591−601

doi: 10.1016/j.molcel.2013.10.033
[21]

Wu L, Zhou H, Zhang Q, Zhang J, Ni F, et al. 2010. DNA methylation mediated by a microRNA pathway. Molecular Cell 38:465−75

doi: 10.1016/j.molcel.2010.03.008
[22]

Liu H, Yu H, Tang G, Huang T. 2018. Small but powerful: function of microRNAs in plant development. Plant Cell Reports 37:515−28

doi: 10.1007/s00299-017-2246-5
[23]

Vyas L, Ojha N, Sharma R, Pathak H, Sudan J. 2023. Functional aspects of miRNA in flower development and flowering. South African Journal of Botany 156:392−97

doi: 10.1016/j.sajb.2023.03.034
[24]

D'Ario M, Griffiths-Jones S, Kim M. 2017. Small RNAs: big impact on plant development. Trends in Plant Science 22:1056−68

doi: 10.1016/j.tplants.2017.09.009
[25]

Tang J, Chu C. 2017. MicroRNAs in crop improvement: fine-tuners for complex traits. Nature Plants 3:17077

doi: 10.1038/nplants.2017.77
[26]

Hunt M, Banerjee S, Surana P, Liu M, Fuerst G, et al. 2019. Small RNA discovery in the interaction between barley and the powdery mildew pathogen. BMC Genomics 20:610

doi: 10.1186/s12864-019-5947-z
[27]

Zhou Q, Shi J, Li Z, Zhang S, Zhang S, et al. 2021. miR156/157 targets SPLs to regulate flowering transition, plant architecture and flower organ size in petunia. Plant and Cell Physiology 62:839−57

doi: 10.1093/pcp/pcab041
[28]

Gualtieri C, Gianella M, Pagano A, Cadeddu T, Araújo S, et al. 2021. Exploring microRNA signatures of DNA damage response using an innovative system of genotoxic stress in Medicago truncatula seedlings. Frontiers in Plant Science 12:645323

doi: 10.3389/fpls.2021.645323
[29]

Bellato M, De Marchi D, Gualtieri C, Sauta E, Magni P, et al. 2019. A bioinformatics approach to explore microRNAs as tools to bridge pathways between plants and animals. Is DNA damage response (DDR) a potential target process? Frontiers in Plant Science 10:1535

doi: 10.3389/fpls.2019.01535
[30]

Vaucheret H, Vazquez F, Crété P, Bartel DP. 2004. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes & Development 18:1187−97

doi: 10.1101/gad.1201404
[31]

Vaucheret H, Mallory AC, Bartel DP. 2006. AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Molecular Cell 22:129−36

doi: 10.1016/j.molcel.2006.03.011
[32]

Kozomara A, Griffiths-Jones S. 2014. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research 42:D68−D73

doi: 10.1093/nar/gkt1181
[33]

Han X, Tang S, Ma X, Liu W, Yang R, et al. 2024. Blocking miR528 function promotes tillering and regrowth in switchgrass. Plant Biotechnology Journal 22:712−21

doi: 10.1111/pbi.14218
[34]

Shen Y, Qin Z, Ren G, Deng P, Ji W, et al. 2023. Complexity and regulation of age-dependent alternative splicing in Brachypodium distachyon. Plant Physiology 192:2703−22

doi: 10.1093/plphys/kiad223
[35]

Wu L, Liu D, Wu J, Zhang R, Qin Z, et al. 2013. Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon. The Plant Cell 25:4363−77

doi: 10.1105/tpc.113.118620
[36]

McKeown M, Schubert M, Preston JC, Fjellheim S. 2017. Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae. Molecular Phylogenetics and Evolution 114:111−21

doi: 10.1016/j.ympev.2017.06.005
[37]

Liu Y, Yan J, Wang K, Li D, Yang R, et al. 2021. MiR396-GRF module associates with switchgrass biomass yield and feedstock quality. Plant Biotechnology Journal 19:1523−36

doi: 10.1111/pbi.13567
[38]

Chuck GS, Tobias C, Sun L, Kraemer F, Li C, et al. 2011. Overexpression of the maize Corngrass1 microRNA prevents flowering, improves digestibility, and increases starch content of switchgrass. Proceedings of the National Academy of Sciences of the United States of America 108:17550−55

doi: 10.1073/pnas.1113971108
[39]

De Quattro C, Pè ME, Bertolini E. 2017. Long noncoding RNAs in the model species Brachypodium distachyon. Scientific Reports 7:11252

doi: 10.1038/s41598-017-11206-z
[40]

Gaillochet C, Lohmann JU. 2015. The never-ending story: from pluripotency to plant developmental plasticity. Development 142:2237−49

doi: 10.1242/dev.117614
[41]

Lucas SJ, Baştaş K, Budak H. 2014. Exploring the interaction between small RNAs and R genes during Brachypodium response to Fusarium culmorum infection. Gene 536:254−64

doi: 10.1016/j.gene.2013.12.025
[42]

Zanini S, Šečić E, Busche T, Galli M, Zheng Y, et al. 2021. Comparative analysis of transcriptome and sRNAs expression patterns in the Brachypodium distachyonMagnaporthe oryzae pathosystems. International Journal of Molecular Sciences 22:650

doi: 10.3390/ijms22020650
[43]

Yan J, Qiu R, Wang K, Liu Y, Zhang W. 2023. Enhancing alfalfa resistance to Spodoptera herbivory by sequestering microRNA396 expression. Plant Cell Reports 42:805−19

doi: 10.1007/s00299-023-02993-z
[44]

Lei Y, Hannoufa A, Yu P. 2020. Overexpression of miR156 and silencing SPL6RNAi and SPL13RNAi genes in Medicago sativa on the changes of carbohydrate physiochemical, fermentation, and nutritional profiles. Journal of Agricultural and Food Chemistry 68:14540−48

doi: 10.1021/acs.jafc.0c02508
[45]

Khan Y, Yadav A, Bonthala VS, Muthamilarasan M, Yadav CB, et al. 2014. Comprehensive genome-wide identification and expression profiling of foxtail millet [Setaria italica (L.)] miRNAs in response to abiotic stress and development of miRNA database. Plant Cell, Tissue and Organ Culture (PCTOC) 118:279−92

doi: 10.1007/s11240-014-0480-x
[46]

Lu Z, Yang Z, Tian Z, Gui Q, Dong R, et al. 2023. Genome-wide analysis and identification of microRNAs in Medicago truncatula under aluminum stress. Frontiers in Plant Science 14:1137764

doi: 10.3389/fpls.2023.1137764
[47]

Tang S, Zhao Y, Ran X, Guo H, Yin T, et al. 2022. Exogenous application of methyl jasmonate at the booting stage improves rice's heat tolerance by enhancing antioxidant and photosynthetic activities. Agronomy 12:1573

doi: 10.3390/agronomy12071573
[48]

Winter J, Diederichs S. 2011. Argonaute proteins regulate microRNA stability: increased microRNA abundance by Argonaute proteins is due to microRNA stabilization. RNA Biology 8:1149−57

doi: 10.4161/rna.8.6.17665
[49]

Nie G, Liao Z, Zhong M, Zhou J, Cai J, et al. 2021. MicroRNA-mediated responses to chromium stress provide insight into tolerance characteristics of Miscanthus sinensis. Frontiers in Plant Science 12:666117

doi: 10.3389/fpls.2021.666117
[50]

Taier G, Hang N, Shi T, Liu Y, Ye W, et al. 2021. Ectopic expression of Os-miR408 improves thermo-tolerance of perennial ryegrass. Agronomy 11:1930

doi: 10.3390/agronomy11101930
[51]

Liao Z, Ghanizadeh H, Zhang X, Yang H, Zhou Y, et al. 2023. Exogenous methyl jasmonate mediated miRNA-mRNA network improves heat tolerance of perennial ryegrass. International Journal of Molecular Sciences 24:11085

doi: 10.3390/ijms241311085
[52]

Fan S, Amombo E, Avoga S, Li Y, Yin Y. 2023. Salt-responsive bermudagrass microRNAs and insights into light reaction photosynthetic performance. Frontiers in Plant Science 14:1141295

doi: 10.3389/fpls.2023.1141295
[53]

Xie F, Stewart CN Jr, Taki FA, He Q, Liu H, et al. 2014. High-throughput deep sequencing shows that microRNA s play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnology Journal 12:354−66

doi: 10.1111/pbi.12142
[54]

Yuan S, Zhao J, Li Z, Hu Q, Yuan N, et al. 2019. MicroRNA396-mediated alteration in plant development and salinity stress response in creeping bentgrass. Horticulture Research 6:48

doi: 10.1038/s41438-019-0130-x
[55]

Long R, Li M, Kang J, Zhang T, Sun Y, et al. 2015. Small RNA deep sequencing identifies novel and salt-stress-regulated microRNAs from roots of Medicago sativa and Medicago truncatula. Physiologia Plantarum 154:13−27

doi: 10.1111/ppl.12266
[56]

Bertolini E, Verelst W, Horner DS, Gianfranceschi L, Piccolo V, et al. 2013. Addressing the role of microRNAs in reprogramming leaf growth during drought stress in Brachypodium distachyon. Molecular Plant 6:423−43

doi: 10.1093/mp/sss160
[57]

Prasad ME, Schofield A, Lyzenga W, Liu H, Stone SL. 2010. Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiology 153:1587−96

doi: 10.1104/pp.110.156976
[58]

Lv D, Zhen S, Zhu G, Bian Y, Chen G, et al. 2016. High-throughput sequencing reveals H2O2 stress-associated microRNAs and a potential regulatory network in Brachypodium distachyon seedlings. Frontiers in Plant Science 7:1567

doi: 10.3389/fpls.2016.01567
[59]

Hang N, Shi T, Liu Y, Ye W, Taier G, et al. 2021. Overexpression of Os-microRNA408 enhances drought tolerance in perennial ryegrass. Physiologia Plantarum 172:733−47

doi: 10.1111/ppl.13276
[60]

Feyissa BA, Arshad M, Gruber MY, Kohalmi SE, Hannoufa A. 2019. The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. BMC Plant Biology 19:434

doi: 10.1186/s12870-019-2059-5
[61]

Guo M, Li H, Zhu L, Wu Z, Li J, et al. 2021. Genome-wide identification of microRNAs associated with osmotic stress and elucidation of the role of miR319 in Medicago ruthenica seedlings. Plant Physiology and Biochemistry 168:53−61

doi: 10.1016/j.plaphy.2021.09.033
[62]

An Y, Guo Y, Liu C, An H. 2015. BdVIL4 regulates flowering time and branching through repressing miR156 in ambient temperature dependent way in Brachypodium distachyon. Plant Physiology and Biochemistry 89:92−99

doi: 10.1016/j.plaphy.2015.02.013
[63]

Feng G, Xu L, Wang J, Nie G, Bushman BS, et al. 2018. Integration of small RNAs and transcriptome sequencing uncovers a complex regulatory network during vernalization and heading stages of orchardgrass (Dactylis glomerata L.). BMC Genomics 19:727

doi: 10.1186/s12864-017-4368-0