[1] |
Rhee SY, Birnbaum KD, Ehrhardt DW. 2019. Towards building a plant cell atlas. Trends Plant Science 24:303−10 doi: 10.1016/j.tplants.2019.01.006 |
[2] |
Zhou Q, Fu Z, Li M, Shen Q, Sun C, et al. 2023. Maize tubulin folding cofactor B is required for cell division and cell growth through modulating microtubule homeostasis. New Phytologist 239:1707−22 doi: 10.1111/nph.18839 |
[3] |
Mulvey H, Dolan L. 2023. RHO GTPase of plants regulates polarized cell growth and cell division orientation during morphogenesis. Current Biology 33:2897−2911.e6 doi: 10.1016/j.cub.2023.06.015 |
[4] |
Fox S, Southam P, Pantin F, Kennaway R, Robinson S, et al. 2018. Spatiotemporal coordination of cell division and growth during organ morphogenesis. PLoS Biology 16:e2005952 doi: 10.1371/journal.pbio.2005952 |
[5] |
Zhang Y, Xiong Y, Liu R, Xue H, Yang Z. 2019. The Rho-family GTPase OsRac1 controls rice grain size and yield by regulating cell division. Proceedings of the National Academy of Sciences of the United States of America 116:16121−26 doi: 10.1073/pnas.1902321116 |
[6] |
Wu S, Hou L, Zhu J, Wang Y, Zheng Y, et al. 2023. Ascorbic acid-mediated reactive oxygen species homeostasis modulates the switch from tapetal cell division to cell differentiation in Arabidopsis. The Plant Cell 35:1474−95 doi: 10.1093/plcell/koad037 |
[7] |
Avramova V, AbdElgawad H, Vasileva I, Petrova AS, Holek A, et al. 2017. High antioxidant activity facilitates maintenance of cell division in leaves of drought tolerant maize hybrids. Frontiers in Plant Science 8:84 doi: 10.3389/fpls.2017.00084 |
[8] |
Pholo M, Coetzee B, Maree HJ, Young PR, Lloyd JR, et al. 2018. Cell division and turgor mediate enhanced plant growth in Arabidopsis plants treated with the bacterial signalling molecule lumichrome. Planta 248:477−88 doi: 10.1007/s00425-018-2916-8 |
[9] |
Chen N, Xu Y, Wang X, Du C, Du J, et al. 2011. OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant, Cell & Environment 34:52−64 doi: 10.1111/j.1365-3040.2010.02225.x |
[10] |
Pillitteri LJ, Guo X, Dong J. 2016. Asymmetric cell division in plants: mechanisms of symmetry breaking and cell fate determination. Cellular and Molecular Life Sciences 73:4213−29 doi: 10.1007/s00018-016-2290-2 |
[11] |
De Veylder L, Joubès J, Inzé D. 2003. Plant cell cycle transitions. Current Opinion in Plant Biology 6:536−43 doi: 10.1016/j.pbi.2003.09.001 |
[12] |
Verkest A, Weinl C, Inzé D, De Veylder L, Schnittger A. 2005. Switching the cell cycle. Kip-related proteins in plant cell cycle control. Plant Physiology 139:1099−106 doi: 10.1104/pp.105.069906 |
[13] |
Sherr CJ, Roberts JM. 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes & Development 13:1501−12 doi: 10.1101/gad.13.12.1501 |
[14] |
Wang H, Fowke LC, Crosby WL. 1997. A plant cyclin-dependent kinase inhibitor gene. Nature 386:451−52 doi: 10.1038/386451a0 |
[15] |
Garza-Aguilar SM, Axosco-Marín J, Lara-Núñez A, Guerrero-Molina ED, Lemus-Enciso AT, et al. 2019. Proliferating cell nuclear antigen associates to protein complexes containing cyclins/cyclin dependent kinases susceptible of inhibition by KRPs during maize germination. Plant Science 280:297−304 doi: 10.1016/j.plantsci.2018.12.020 |
[16] |
Inzé D, De Veylder L. 2006. Cell cycle regulation in plant development. Annual Review of Genetics 40:77−105 doi: 10.1146/annurev.genet.40.110405.090431 |
[17] |
De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, et al. 2001. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. The Plant Cell 13:1653−68 doi: 10.1105/TPC.010087 |
[18] |
Liu G, Guan Z, Ma M, Wang H, Liu X, et al. 2023. Genome-wide identification and molecular characterization of SlKRP family members in tomato and their expression profiles in response to abiotic stress. Vegetable Research 3:27 doi: 10.48130/VR-2023-0027 |
[19] |
Guo B, Chen L, Dong L, Yang C, Zhang J, et al. 2023. Characterization of the soybean KRP gene family reveals a key role for GmKRP2a in root development. Frontiers in Plant Science 14:1096467 doi: 10.3389/fpls.2023.1096467 |
[20] |
Xue B, Zhang C, Wang Y, Liu L, Wang W, et al. 2023. HECT-type ubiquitin ligase KAKTUS mediates the proteasome-dependent degradation of cyclin-dependent kinase inhibitor KRP2 during trichome morphogenesis in Arabidopsis. The Plant Journal 116:871−86 doi: 10.1111/tpj.16415 |
[21] |
Sizani BL, Kalve S, Markakis MN, Domagalska MA, Stelmaszewska J, et al. 2019. Multiple mechanisms explain how reduced KRP expression increases leaf size of Arabidopsis thaliana. New Phytologist 221:1345−58 doi: 10.1111/nph.15458 |
[22] |
Cheng Y, Cao L, Wang S, Li Y, Shi X, et al. 2013. Downregulation of multiple CDK inhibitor ICK/KRP genes upregulates the E2F pathway and increases cell proliferation, and organ and seed sizes in Arabidopsis. The Plant Journal 75:642−55 doi: 10.1111/tpj.12228 |
[23] |
Zhao X, Harashima H, Dissmeyer N, Pusch S, Weimer AK, et al. 2012. A general G1/S-phase cell-cycle control module in the flowering plant Arabidopsis thaliana. PLoS Genetics 8:e1002847 doi: 10.1371/journal.pgen.1002847 |
[24] |
Liu J, Zhang Y, Qin G, Tsuge T, Sakaguchi N, et al. 2008. Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. The Plant Cell 20:1538−54 doi: 10.1105/tpc.108.059741 |
[25] |
Zhao X, Bramsiepe J, Van Durme M, Komaki S, Prusicki MA, et al. 2017. RETINOBLASTOMA RELATED1 mediates germline entry in Arabidopsis. Science 356:eaaf6532 doi: 10.1126/science.aaf6532 |
[26] |
Vieira P, De Clercq A, Stals H, Van Leene J, Van De Slijke E, et al. 2014. The cyclin-dependent kinase inhibitor KRP6 induces mitosis and impairs cytokinesis in giant cells induced by plant-parasitic nematodes in Arabidopsis. The Plant Cell 26:2633−47 doi: 10.1105/tpc.114.126425 |
[27] |
Wen B, Nieuwland J, Murray JAH. 2013. The Arabidopsis CDK inhibitor ICK3/KRP5 is rate limiting for primary root growth and promotes growth through cell elongation and endoreduplication. Journal of Experimental Botany 64:1−13 doi: 10.1093/jxb/ert009 |
[28] |
Shen L, Xia X, Zhang L, Yang S, Yang X. 2023. SmWRKY11 acts as a positive regulator in eggplant response to salt stress. Plant Physiology and Biochemistry 205:108209 doi: 10.1016/j.plaphy.2023.108209 |
[29] |
Fathi SAA. 2023. Eggplant-garlic intercrops reduce the density of Tetranychus urticae on eggplant and improve crop yield. Experimental and Applied Acarology 91:43−55 doi: 10.1007/s10493-023-00821-3 |
[30] |
Shen L, He J, Yang X. 2023. Genome-wide identification of calmodulin-binding protein 60 gene family and function of SmCBP60A1 in eggplant response to salt stress. Scientia Horticulturae 322:112448 doi: 10.1016/j.scienta.2023.112448 |
[31] |
Shen L, Xia X, Zhang L, Yang S, Yang X. 2023. Genome-wide identification of catalase gene family and the function of SmCAT4 in eggplant response to salt stress. International Journal of Molecular Sciences 24:16979 doi: 10.3390/ijms242316979 |
[32] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42 doi: 10.1016/j.molp.2023.09.010 |
[33] |
Barchi L, Rabanus-Wallace MT, Prohens J, Toppino L, Padmarasu S, et al. 2021. Improved genome assembly and pan-genome provide key insights into eggplant domestication and breeding. The Plant Journal 107:579−96 doi: 10.1111/tpj.15313 |
[34] |
Li D, Qian J, Li W, Yu N, Gan G, et al. 2021. A high-quality genome assembly of the eggplant provides insights into the molecular basis of disease resistance and chlorogenic acid synthesis. Molecular Ecology Resources 21:1274−86 doi: 10.1111/1755-0998.13321 |
[35] |
Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. In 2-D Proteome Analysis Protocols, ed. Link AJ. vol 112. Humana Press. pp. 531−52. https://doi.org/10.1385/1-59259-584-7:531 |
[36] |
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74 doi: 10.1093/molbev/msw054 |
[37] |
Du Y, Zhang Z, Gu Y, Li W, Wang W, et al. 2023. Genome-wide identification of the soybean cytokinin oxidase/dehydrogenase gene family and its diverse roles in response to multiple abiotic stress. Frontiers in Plant Science 14:1163219 doi: 10.3389/fpls.2023.1163219 |
[38] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[39] |
Shen L, Zhou Y, Yang X. 2024. Genome-wide identification of ascorbate peroxidase (APX) gene family and the function of SmAPX2 under high temperature stress in eggplant. Scientia Horticulturae 326:112744 doi: 10.1016/j.scienta.2023.112744 |
[40] |
Barchi L, Pietrella M, Venturini L, Minio A, Toppino L, et al. 2019. A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports 9:11769 doi: 10.1038/s41598-019-47985-w |
[41] |
Shen L, Zhao E, Liu R, Yang X. 2022. Transcriptome analysis of eggplant under salt stress: AP2/ERF transcription factor SmERF1 acts as a positive regulator of salt stress. Plants 11:2205 doi: 10.3390/plants11172205 |
[42] |
Barton MK. 2010. Twenty years on: the inner workings of the shoot apical meristem, a developmental dynamo. Developmental Biology 341:95−113 doi: 10.1016/j.ydbio.2009.11.029 |
[43] |
Sharif R, Su L, Chen X, Qi X. 2022. Involvement of auxin in growth and stress response of cucumber. Vegetable Research 2:13 doi: 10.48130/VR-2022-0013shu |
[44] |
Torres Acosta JA, Fowke LC, Wang H. 2011. Analyses of phylogeny, evolution, conserved sequences and genome-wide expression of the ICK/KRP family of plant CDK inhibitors. Annals of Botany 107:1141−57 doi: 10.1093/aob/mcr034 |
[45] |
Moore RC, Purugganan MD. 2003. The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America 100:15682−87 doi: 10.1073/pnas.2535513100 |
[46] |
Cao L, Wang S, Venglat P, Zhao L, Cheng Y, et al. 2018. Arabidopsis ICK/KRP cyclin-dependent kinase inhibitors function to ensure the formation of one megaspore mother cell and one functional megaspore per ovule. PLoS Genetics 14:e1007230 doi: 10.1371/journal.pgen.1007230 |
[47] |
Barroco RM, Peres A, Droual AM, De Veylder L, Nguyen LSL, et al. 2006. The cyclin-dependent kinase inhibitor Orysa;KRP1 plays an important role in seed development of rice. Plant Physiology 142:1053−64 doi: 10.1104/pp.106.087056 |
[48] |
Sabag M, Ben Ari G, Zviran T, Biton I, Goren M, et al. 2013. PaKRP, a cyclin-dependent kinase inhibitor from avocado, may facilitate exit from the cell cycle during fruit growth. Plant Science 213:18−29 doi: 10.1016/j.plantsci.2013.08.007 |
[49] |
Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, et al. 2019. A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. eLife 8:e43944 doi: 10.7554/eLife.43944.002 |