[1]

Vargas JM, Turgeon AJ. 2004. Poa annua: physiology, culture, and control of annual bluegrass. USA: John Wiley & Sons. pp. 2−3.

[2]

Yelverton FH. 2015. Poa annua management on golf course putting greens. USGA Green Section 53:252982

[3]

Beard JB, Rieke PE, Turgeon AJ, Vargas JJ. 1978. Annual bluegrass (Poa annua L.): description, adaptation, culture and control. Research Report. East Lansing: Michigan State University, Agricultural Experiment Station.

[4]

Black J. 2011. Poa: wanted dead or alive? Golf Course Industry Magazine. www.golfcourseindustry.com/article/gie-2711-poa-dead-or-alive

[5]

Lush WM. 1988. Biology of Poa annua in a temperature zone golf putting green (Agrostis stolonifera/Poa annua). I. The above-ground population. Journal of Applied Ecology 25:977−88

doi: 10.2307/2403759
[6]

Jiang Y, Huang B. 2001. Physiological responses to heat stress alone or in combination with drought: a comparison between tall fescue and perennial ryegrass. HortScience 36:682−86

doi: 10.21273/HORTSCI.36.4.682
[7]

Yang Z, Miao Y, Yu J, Liu J, Huang B. 2014. Differential growth and physiological responses to heat stress between two annual and two perennial cool-season turfgrasses. Scientia Horticulturae 170:75−81

doi: 10.1016/j.scienta.2014.02.005
[8]

Jiang Y, Huang B. 2001. Drought and heat stress injury to two cool-season turfgrasses in relation to antioxidant metabolism and lipid peroxidation. Crop Science 41:436−42

doi: 10.2135/cropsci2001.412436x
[9]

Liu X, Huang B. 2000. Carbohydrate accumulation in relation to heat stress tolerance in two creeping bentgrass cultivars. Journal of the American Society for Horticultural Science 125:442−47

doi: 10.21273/JASHS.125.4.442
[10]

Soliman WS, Fujimori M, Tase K, Sugiyama SI. 2012. Heat tolerance and suppression of oxidative stress: comparative analysis of 25 cultivars of the C3 grass Lolium perenne. Environmental and Experimental Botany 78:10−17

doi: 10.1016/j.envexpbot.2011.12.013
[11]

Wang Q, Chen J, He N, Guo F. 2018. Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences 19:849

doi: 10.3390/ijms19030849
[12]

Jiang J, Guo Z, Sun X, Jiang Y, Xie F, et al. 2023. Role of proline in regulating turfgrass tolerance to abiotic stress. Grass Research 3:2

doi: 10.48130/GR-2023-0002
[13]

Rossi S, Chapman C, Yuan B, Huang B. 2021. Glutamate acts as a repressor for heat-induced leaf senescence involving chlorophyll degradation and amino acid metabolism in creeping bentgrass. Grass Research 1:4

doi: 10.48130/GR-2021-0004
[14]

Duff DT, Beard JB. 1974. Supraoptimal temperature effects upon Agrostis palustris: Part II. influence on carbohydrate levels, photosynthetic rate, and respiration rate. Physiologia Plantarum 32:18−22

doi: 10.1111/j.1399-3054.1974.tb03720.x
[15]

Larkindale J, Huang B. 2004. Changes of lipid composition and saturation level in leaves and roots for heat-stressed and heat-acclimated creeping bentgrass (Agrostis stolonifera). Environmental and Experimental Botany 51:57−67

doi: 10.1016/S0098-8472(03)00060-1
[16]

Xu Q, Huang B. 2004. Antioxidant metabolism associated with summer leaf senescence and turf quality decline for creeping bentgrass. Crop Science 44:553−560

doi: 10.2135/cropsci2004.5530
[17]

Beard JB. 1973. Turfgrass: science and culture. Engle-wood Cliffs, NJ: Prentice Hall. x, 658 pp.

[18]

Karcher DE, Richardson MD. 2003. Quantifying turfgrass color using digital image analysis. Crop Science 43:943−51

doi: 10.2135/cropsci2003.9430
[19]

Karcher DE, Richardson MD. 2005. Batch analysis of digital images to evaluate turfgrass characteristics. Crop Science 45:1536−1539

doi: 10.2135/cropsci2004.0562
[20]

Blum A, Ebercon A. 1981. Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science 21:43−47

doi: 10.2135/cropsci1981.0011183X002100010013x
[21]

Errickson W, Huang B. 2023. Rhizobacteria-enhanced drought tolerance and post-drought recovery of creeping bentgrass involving differential modulation of leaf and root metabolism. Physiologia Plantarum 175:e14004

doi: 10.1111/ppl.14004
[22]

Melamud E, Vastag L, Rabinowitz JD. 2010. Metabolomic analysis and visualization engine for LC-MS data. Analytical Chemistry 82:9818−26

doi: 10.1021/ac1021166
[23]

Fry J, Huang B. 2004. Applied turfgrass science and physiology. USA: John Wiley & Sons. 320 pp.

[24]

Sicher RC. 2015. Temperature shift experiments suggest that metabolic impairment and enhanced rates of photorespiration decrease organic acid levels in soybean leaflets exposed to supra-optimal growth temperatures. Metabolites 5:443−54

doi: 10.3390/metabo5030443
[25]

Lei S, Rossi S, Huang B. 2022. Metabolic and physiological regulation of aspartic acid-mediated enhancement of heat stress tolerance in perennial ryegrass. Plants 11:199

doi: 10.3390/plants11020199
[26]

Kim YM, Kim HJ, Song EJ, Lee KJ. 2004. Glucuronic acid is a novel inducer of heat shock response. Molecular and Cellular Biochemistry 259:23−33

doi: 10.1023/B:MCBI.0000021341.38630.52
[27]

Yildirim E, Ekinci M, Turan M, Ors S, Yüce M. 2022. Drought and biostimulant treatments affected organic acid content of tomato seedlings. Proceedings of the International Conference on Agriculture 7:21−28

doi: 10.17501/26827018.2022.7103
[28]

Rossi S, Chapman C, Yuan B, Huang B. 2021. Improved heat tolerance in creeping bentgrass by γ-aminobutyric acid, proline, and inorganic nitrogen associated with differential regulation of amino acid metabolism. Plant Growth Regulation 93:231−42

doi: 10.1007/s10725-020-00681-6
[29]

Batista-Silva W, Heinemann B, Rugen N, Nunes-Nesi A, Araújo WL, et al. 2019. The role of amino acid metabolism during abiotic stress release. Plant, Cell & Environment 42:1630−44

doi: 10.1111/pce.13518
[30]

Le XH, Millar AH. 2023. The diversity of substrates for plant respiration and how to optimize their use. Plant Physiology 191:2133−49

doi: 10.1093/plphys/kiac599
[31]

Pires MV, Pereira Júnior AA, Medeiros DB, Daloso DM, Pham PA, et al. 2016. The influence of alternative pathways of respiration that utilize branched-chain amino acids following water shortage in Arabidopsis. Plant, Cell & Environment 39:1304−19

doi: 10.1111/pce.12682