[1] |
Shestakova TA, Gutiérrez E, Kirdyanov AV, Camarero JJ, Génova M, et al. 2016. Forests synchronize their growth in contrasting eurasian regions in response to climate warming. Proceedings of the National Academy of Sciences of the United States of America 113:662−67 doi: 10.1073/pnas.1514717113 |
[2] |
Mori AS, Lertzman KP, Gustafsson L. 2017. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology 54:12−27 doi: 10.1111/1365-2664.12669 |
[3] |
Liang X, Wang Y, Jaakkola A, Kukko A, Kaartinen H, et al. 2015. Forest data collection using terrestrial image-based point clouds from a handheld camera compared to terrestrial and personal laser scanning. IEEE Transactions on Geoscience and Remote Sensing 53:5117−32 doi: 10.1109/TGRS.2015.2417316 |
[4] |
Hortobágyi B, Corenblit D, Vautier F, Steiger J, Roussel E, et al. 2017. A multi-scale approach of fluvial biogeomorphic dynamics using photogrammetry. Journal of Environmental Management 202:348−62 doi: 10.1016/j.jenvman.2016.08.069 |
[5] |
Ni W, Ranson KJ, Zhang Z, Sun G. 2014. Features of point clouds synthesized from multi-view ALOS/PRISM data and comparisons with LiDAR data in forested areas. Remote Sensing of Environment 149:47−57 doi: 10.1016/j.rse.2014.04.001 |
[6] |
Watt PJ, Donoghue DNM. 2005. Measuring forest structure with terrestrial laser scanning. International Journal of Remote Sensing 26:1437−46 doi: 10.1080/01431160512331337961 |
[7] |
Tansey K, Selmes N, Anstee A, Tate NJ, Denniss A. 2009. Estimating tree and stand variables in a Corsican Pine woodland from terrestrial laser scanner data. International Journal of Remote Sensing 30:5195−209 doi: 10.1080/01431160902882587 |
[8] |
Henning JG, Radtke PJ. 2008. Multiview range-image registration for forested scenes using explicitly-matched tie points estimated from natural surfaces. ISPRS Journal of Photogrammetry and Remote Sensing 63:68−83 doi: 10.1016/j.isprsjprs.2007.07.006 |
[9] |
Hilker T, Coops NC, Culvenor DS, Newnham G, Wulder MA, et al. 2012. A simple technique for co-registration of terrestrial LiDAR observations for forestry applications. Remote Sensing Letters 3:239−47 doi: 10.1080/01431161.2011.565815 |
[10] |
Pueschel P. 2013. The influence of scanner parameters on the extraction of tree metrics from FARO Photon 120 terrestrial laser scans. ISPRS Journal of Photogrammetry and Remote Sensing 78:58−68 doi: 10.1016/j.isprsjprs.2013.01.005 |
[11] |
Zhang W, Chen Y, Wang H, Chen M, Wang X, et al. 2016. Efficient registration of terrestrial LiDAR scans using a coarse-to-fine strategy for forestry applications. Agricultural and Forest Meteorology 225:8−23 doi: 10.1016/j.agrformet.2016.05.005 |
[12] |
Calders K, Burt A, Origo N, Disney M, Nightingale J, et al. 2016. Large-area virtual forests from terrestrial laser scanning data. Proc. IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Beijing, 2016. pp. 1765−67. US: The Institute of Electrical and Electronics Engineers, Inc. https://doi.org/10.1109/IGARSS.2016.7729452 |
[13] |
Olofsson K, Lindberg E, Holmgren J. 2008. A method for linking field-surveyed and aerial-detected single trees using cross correlation of position images and the optimization of weighted tree list graphs. Proc. SilviLaser 2008. Edinburgh, UK: Heriot-Watt University. pp. 95−104. |
[14] |
Liang X, Hyyppä J. 2013. Automatic stem mapping by merging several terrestrial laser scans at the feature and decision levels. Sensors 13:1614−34 doi: 10.3390/s130201614 |
[15] |
Hauglin M, Lien V, Næsset E, Gobakken T. 2014. Geo-referencing forest field plots by co-registration of terrestrial and airborne laser scanning data. International Journal of Remote Sensing 35:3135−49 doi: 10.1080/01431161.2014.903440 |
[16] |
Kelbe D, van Aardt J, Romanczyk P, van Leeuwen M, Cawse-Nicholson K. 2016. Marker-free registration of forest terrestrial laser scanner data pairs with embedded confidence metrics. IEEE Transactions on Geoscience and Remote Sensing 54:4314−30 doi: 10.1109/TGRS.2016.2539219 |
[17] |
Liu J, Liang X, Hyyppä J, Yu X, Lehtomäki M, et al. 2017. Automated matching of multiple terrestrial laser scans for stem mapping without the use of artificial references. International Journal of Applied Earth Observation and Geoinformation 56:13−23 doi: 10.1016/j.jag.2016.11.003 |
[18] |
Tremblay JF, Béland M. 2018. Towards operational marker-free registration of terrestrial lidar data in forests. ISPRS Journal of Photogrammetry and Remote Sensing 146:430−35 doi: 10.1016/j.isprsjprs.2018.10.011 |
[19] |
Puletti N, Grotti M, Masini A, Bracci A, Ferrara C. 2022. Enhancing wall-to-wall forest structure mapping through detailed co-registration of airborne and terrestrial laser scanning data in Mediterranean forests. Ecological Informatics 67:101497 doi: 10.1016/j.ecoinf.2021.101497 |
[20] |
Paris C, Kelbe D, van Aardt J, Bruzzone L. 2017. A novel automatic method for the fusion of ALS and TLS LiDAR data for robust assessment of tree crown structure. IEEE Transactions on Geoscience and Remote Sensing 55:3679−93 doi: 10.1109/TGRS.2017.2675963 |
[21] |
Yang Y, Sun Y, Lin W. 2019. Tree point cloud registration based on FPFH feature and NDT algorithm. Journal of Northwest Forestry University 34:141−46 doi: 10.3969/j.issn.1001-7461.2019.05.22 |
[22] |
Wang H, Liu Y, Dong Z, Wang W. 2022. You only hypothesize once: point cloud registration with rotation-equivariant descriptors. Proc. 30th ACM International Conference on Multimedia, 2022. pp. 1630–41. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3503161.3548023 |
[23] |
Polewski P, Erickson A, Yao W, Coops N, Krzystek P, et al. 2016. Object-based coregistration of terrestrial photogrammetric and ALS point clouds in forested areas. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences III-3:347−54 doi: 10.5194/isprs-annals-III-3-347-2016 |
[24] |
Dai W, Yang B, Liang X, Dong Z, Huang R, et al. 2020. Fast registration of forest terrestrial laser scans using key points detected from crowns and stems. International Journal of Digital Earth 13:1585−603 doi: 10.1080/17538947.2020.1764118 |
[25] |
Guan H, Su Y, Sun X, Xu G, Li W, et al. 2020. A marker-free method for registering multi-scan terrestrial laser scanning data in forest environments. ISPRS Journal of Photogrammetry and Remote Sensing 166:82−94 doi: 10.1016/j.isprsjprs.2020.06.002 |
[26] |
Charles RQ, Su H, Kaichun M, Guibas LJ. 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. pp. 77−85. Honolulu, HI, USA: The Institute of Electrical and Electronics Engineers, Inc. https://doi.org/10.1109/CVPR.2017.16 |
[27] |
Wężyk P, Pierzchalski M. 2007. Terrestrial laser scanning versus traditional forest inventory first results from the polish forests. Proc. ISPRS Workshop on Laser Scanning 2007 and SilviLaser 2007. Espoo, Finland. 36: 424−29. |
[28] |
Bienert A, Maas HG. 2009. Methods for the automatic geometric registration of terrestrial laser scanner point clouds in forest stands. Proc. Laser Scanning 2009. Paris: ISPRS. XXXVIII: 93−98. |
[29] |
Giannetti F, Puletti N, Quatrini V, Travaglini D, Bottalico F, et al. 2018. Integrating terrestrial and airborne laser scanning for the assessment of single-tree attributes in Mediterranean forest stands. European Journal of Remote Sensing 51:795−807 doi: 10.1080/22797254.2018.1482733 |
[30] |
Ge X, Zhu Q. 2021. Target-based automated matching of multiple terrestrial laser scans for complex forest scenes. ISPRS Journal of Photogrammetry and Remote Sensing 179:1−13 doi: 10.1016/j.isprsjprs.2021.06.019 |
[31] |
Dai W, Kan H, Tan R, Yang B, Guan Q, et al. 2022. Multisource forest point cloud registration with semantic-guided keypoints and robust RANSAC mechanisms. International Journal of Applied Earth Observation and Geoinformation 115:103105 doi: 10.1016/j.jag.2022.103105 |
[32] |
Wang X, Yang Z, Cheng X, Stoter J, Xu W, et al. 2023. GlobalMatch: registration of forest terrestrial point clouds by global matching of relative stem positions. ISPRS Journal of Photogrammetry and Remote Sensing 197:71−86 doi: 10.1016/j.isprsjprs.2023.01.013 |
[33] |
Bienert A, Georgi L, Kunz M, Maas HG, von Oheimb G. 2018. Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories. Forests 9:395 doi: 10.3390/f9070395 |
[34] |
Shao J, Zhang W, Mellado N, Wang N, Jin S, et al. 2020. SLAM-aided forest plot mapping combining terrestrial and mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing 163:214−30 doi: 10.1016/j.isprsjprs.2020.03.008 |
[35] |
Gao S, Di H, Xing Y, Cai L. 2022. A comparative study on the matching algorithms of forest point cloud frames for Backpack Laser Scanning. Journal of Central South University of Forestry & Technology 42:1−11 |
[36] |
Kukko A, Kaijaluoto R, Kaartinen H, Lehtola VV, Jaakkola A, et al. 2017. Graph SLAM correction for single scanner MLS forest data under boreal forest canopy. ISPRS Journal of Photogrammetry and Remote Sensing 132:199−209 doi: 10.1016/j.isprsjprs.2017.09.006 |
[37] |
Dorigo W, Hollaus M, Wagner W, Schadauer K. 2010. An application-oriented automated approach for co-registration of forest inventory and airborne laser scanning data. International Journal of Remote Sensing 31:1133−53 doi: 10.1080/01431160903380581 |
[38] |
Zhang J, Wang J, Cheng F, Ma W, Liu Q, et al. 2023. Natural forest ALS-TLS point cloud data registration without control points. Journal of Forestry Research 34:809−20 doi: 10.1007/s11676-022-01499-w |
[39] |
Zhao Y, Im J, Zhen Z, Zhao Y. 2023. Towards accurate individual tree parameters estimation in dense forest: optimized coarse-to-fine algorithms for registering UAV and terrestrial LiDAR data. GIScience & Remote Sensing 60:2197281 doi: 10.1080/15481603.2023.2197281 |
[40] |
Fritz A, Weinacker H, Koch B. 2011. A method for linking TLS-and ALS-derived trees. Proceedings SilviLaser 2011 Conference, Hobart, 2011, pp. 1−9. Australia: University of Tasmania. |
[41] |
Lindberg E, Holmgren J, Olofsson K, Olsson H. 2012. Estimation of stem attributes using a combination of terrestrial and airborne laser scanning. European Journal of Forest Research 131:1917−31 doi: 10.1007/s10342-012-0642-5 |
[42] |
Huang H, Lu Y, Tang L, Li X, Peng W, et al. 2022. Registration of point cloud from different platforms in forested area based on tree position features. Scientia Silvae Sinicae 58:96−107 |
[43] |
Dai W, Yang B, Liang X, Dong Z, Huang R, et al. 2019. Automated fusion of forest airborne and terrestrial point clouds through canopy density analysis. ISPRS Journal of Photogrammetry and Remote Sensing 156:94−107 doi: 10.1016/j.isprsjprs.2019.08.008 |
[44] |
Liu Q, Wang J, Ma W, Zhang J, Deng Y, et al. 2021. Target-free ULS-TLS point-cloud registration for alpine forest lands. Computers and Electronics in Agriculture 190:106460 doi: 10.1016/j.compag.2021.106460 |
[45] |
Zhang W, Shao J, Jin S, Luo L, Ge J, et al. 2021. Automated marker-free registration of multisource forest point clouds using a coarse-to-global adjustment strategy. Forests 12:269 doi: 10.3390/f12030269 |
[46] |
Liu Q, Zhu N, Yu W, Pan C, Dai W, et al. 2022. A method for automatic registration of unmanned aerial vehicle and terrestrial laser scanning point clouds in forest areas. Geospatial Information 20:96−101 doi: 10.3969/j.issn.1672-4623.2022.05.023 |
[47] |
Fekry R, Yao W, Cao L, Shen X. 2022. Ground-based/UAV-LiDAR data fusion for quantitative structure modeling and tree parameter retrieval in subtropical planted forest. Forest Ecosystems 9:100065 doi: 10.1016/j.fecs.2022.100065 |
[48] |
Shao J, Yao W, Wan P, Luo L, Wang P, et al. 2022. Efficient divide-and-conquer registration of UAV and ground LiDAR point clouds through canopy shapes. International Journal of Applied Earth Observation and Geoinformation 114:103067 doi: 10.1016/j.jag.2022.103067 |
[49] |
Polewski P, Yao W, Cao L, Gao S. 2019. Marker-free coregistration of UAV and backpack LiDAR point clouds in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing 147:307−18 doi: 10.1016/j.isprsjprs.2018.11.020 |
[50] |
Tian J, Dai T, Li H, Liao C, Teng W, et al. 2019. A novel tree height extraction approach for individual trees by combining TLS and UAV image-based point cloud integration. Forests 10:537 doi: 10.3390/f10070537 |
[51] |
Shimizu K, Nishizono T, Kitahara F, Fukumoto K, Saito H. 2022. Integrating terrestrial laser scanning and unmanned aerial vehicle photogrammetry to estimate individual tree attributes in managed coniferous forests in Japan. International Journal of Applied Earth Observation and Geoinformation 106:102658 doi: 10.1016/j.jag.2021.102658 |
[52] |
Ferraz A, Saatchi S, Bormann KJ, Painter TH. 2018. Fusion of NASA Airborne Snow Observatory (ASO) lidar time series over mountain forest landscapes. Remote Sensing 10:164 doi: 10.3390/rs10020164 |
[53] |
Fekry R, Yao W, Cao L, Shen X. 2021. Marker-less UAV-LiDAR strip alignment in plantation forests based on topological persistence analysis of clustered canopy cover. ISPRS International Journal of Geo-Information 10:284 doi: 10.3390/ijgi10050284 |
[54] |
Huang R, Yao W, Xu Z, Cao L, Shen X. 2022. Information fusion approach for biomass estimation in a plateau mountainous forest using a synergistic system comprising UAS-based digital camera and LiDAR. Computers and Electronics in Agriculture 202:107420 doi: 10.1016/j.compag.2022.107420 |
[55] |
Guan H, Su Y, Hu T, Wang R, Ma Q, et al. 2020. A novel framework to automatically fuse multiplatform LiDAR data in forest environments based on tree locations. IEEE Transactions on Geoscience and Remote Sensing 58:2165−77 doi: 10.1109/TGRS.2019.2953654 |
[56] |
Chen M, Xiao L, Jin Z, Pan J, Mu F, et al. 2023. Registration of terrestrial laser scanning data in forest areas using smartphone positioning and orientation data. Remote Sensing Letters 14:381−91 doi: 10.1080/2150704X.2023.2206974 |
[57] |
Cao L, Coops NC, Innes JL, Sheppard SRJ, Fu L, et al. 2016. Estimation of forest biomass dynamics in subtropical forests using multi-temporal airborne LiDAR data. Remote Sensing of Environment 178:158−71 doi: 10.1016/j.rse.2016.03.012 |
[58] |
Liu J, Feng Z, Yang L, Mannan A, Khan TU, et al. 2018. Extraction of sample plot parameters from 3D point cloud reconstruction based on combined RTK and CCD continuous photography. Remote Sensing 10:1299 doi: 10.3390/rs10081299 |