[1]

Chen QY. 1989. Briefing on the introduction of Lemon. Agricultural Science and Technology Newsletter 12:16−17

[2]

Lin WH. 2022. Finger orange and old citron. Szechuan Cuisine 2022(6):24−26

[3]

Zhou Z. 2016. Australia: finger lemon development on the rise. China Fruit Industry Information 33(1):34−35

[4]

Xiao BW, Zhang QX, Wang JL, Feng J, Liu JL, et al. 2020. Hainan finger lime main pests and diseases initial report. Tropical Agricultural Science and Technology 43:20−24

doi: 10.16005/j.cnki.tast.2020.04.005
[5]

Hu XL. 2013. Aussie Fingerling Lemon. Wealthy World 2013(2):81

[6]

Liu GS. 2019. Development of apple SSR and SNP markers and their application in genetic map construction and variety identification. Thesis. Hunan Agricultural University, China.

[7]

Feng RX. 2011. Studies on the classification of plant species and plant varieties. New Curriculum (Teaching and Research) 2011(3):116

[8]

Duan CY, Xue X, Zhang YB. 2007. Classification of plant species and plant varieties. Shi Zhen National Medicine and Pharmacy 2007(9):2185−86

[9]

Shi Q, Wang CZ. 2001. A study of branching taxonomy algorithms and their application to the classification of organisms. Journal of Beijing University of Technology 27(3):266−72

doi: 10.3969/j.issn.0254-0037.2001.03.003
[10]

Goodwin ZA, Harris DJ, Filer D, Wood JRI, Scotland RW. 2015. Widespread mistaken identity in tropical plant collections. Current Biology 25:R1066−R1067

doi: 10.1016/j.cub.2015.10.002
[11]

Ma WQ, Wang HY, Zhang WJ, Wang S, Wan XF, et al. 2021. Effects of ecological factors on shape and ginsenoside of Panax ginseng. China Journal of Chinese Materia Medica 46(8):1920−26

doi: 10.19540/j.cnki.cjcmm.20210123.102
[12]

Guan MY, Xu ZH, Cai XY, Li XY, Hu XX. 2009. Climate characteristics of off-season pineapple cultivation in Hainan. Meteorological Research and Application 30(4):56−59

doi: 10.3969/j.issn.1673-8411.2009.04.016
[13]

Li M, Dai FL. 2022. Cultivation techniques of large cherry and key points of pest control techniques. Friends of the Fruit growers 2022(5):36−39

doi: 10.3969/j.issn.1671-7759.2022.05.013
[14]

Dutt M, Mahmoud LM, Chamusco K, Stanton D, Chase CD, et al. 2021. Utilization of somatic fusion techniques for the development of HLB tolerant breeding resources employing the Australian finger lime (Citrus australasica). PLoS One 16:e0255842

doi: 10.1371/journal.pone.0255842
[15]

Traband RC, Wang X, Lui J, Yu L, Hiraoka Y, et al. 2023. Exploring the Phylogenetic Relationship among Citrus through Leaf Shape Traits: A Morphological Study on Citrus Leaves. Horticulturae 9:793

doi: 10.3390/horticulturae9070793
[16]

Mahmoud LM, Killiny N, Holden P, Gmitter FG Jr, Grosser JW, et al. 2023. Physiological and Biochemical Evaluation of Salt Stress Tolerance in a Citrus Tetraploid Somatic Hybrid. Horticulturae 9:1215

doi: 10.3390/horticulturae9111215
[17]

Kim DS, Jeong SM, Jo SH, Chanmuang S, Kim SS, et al. 2023. Comparative analysis of physicochemical properties and storability of a new citrus variety, Yellowball, and its parent. Plants 12:2863

doi: 10.3390/plants12152863
[18]

Adhikari B, Dutt M, Vashisth T. 2021. Comparative phytochemical analysis of the fruits of four Florida-grown finger lime (Citrus australasica) selections. LWT 135:110003

doi: 10.1016/j.lwt.2020.110003
[19]

Bowman KD, McCollum G, Plotto A, Bai J. 2019. Minnie finger lime: A new novelty citrus cultivar. HortScience 54:1425−28

doi: 10.21273/HORTSCI13622-18
[20]

Birmingham E. 2002. Rainforest Pearl. Plant Varieties Journal 15(2):33−34

[21]

Wen ZF, Xie YH, Li LH, Zhou N, Hong L, et al. 2006. Fruit characteristics and growth dynamics of Fino and Yuric lemon. The 7th Youth Symposium of Horticultural Society of China, Taian, Shandong, 18−20 July 2006. China: Horticultural Society of China. pp. 65−68.

[22]

Li F, Liu YT, Wang XH, Li HL, Wang G, et al. 2021. Observations on the dynamics of fruit growth and development of two lychee varieties. Tropical Agricultural Science 41(10):27−33

[23]

Teng YF, Zhan YF, Zhen WL, Tian XP, Lu YF, et al. 2019. Study on the growth and development pattern of new shoots and fruits of six varieties of apricots. Forestry Science and Technology Newsletter 2019(6):86−89

doi: 10.13456/j.cnki.lykt.2018.09.04.0002
[24]

Li XY, Xiao J, Xu JK, Song FB, Tan JJ. 2018. Fruit growth and development pattern of Guichang kiwifruit. Anhui Agricultural Science 46(21):75−77

doi: 10.3969/j.issn.0517-6611.2018.21.021
[25]

Zhang X, Li YJ, Zhang FX, Sun QT, Tian CP, et al. 2018. Dynamic changes in the quality of sweet cherry fruits during development. Hebei Agricultural Science 22(2):38−40

doi: 10.16318/j.cnki.hbnykx.2018.02.008
[26]

Gao AH, Wei Q, Chen JL, Ling SP, Zheng W, et al. 2004. A preliminary report on the observation of fruit growth pattern of red-fleshed dragon fruit. Southwest Horticulture 32(6):4−5

[27]

Zhang F. 2022. Influencing factors and countermeasures of fruit tree quality in northern Shandong Province. Modern Agricultural Science and Technology 2022(6):51−52+55

doi: 10.3969/j.issn.1007-5739.2022.06.016
[28]

Cheng HQ, Dong Y. 2020. Analysis of influencing factors of kiwi fruit quality in southern Shaanxi. Grass-roots Agricultural Extension 8:85−88

[29]

Li JX. 2023. Regulation and mechanism of flowers and fruits in spring and autumn in Dehong, Yunnan. Thesis. Huazhong Agricultural University, China.

[30]

Carbonell-Caballero J, Alonso R, Ibañez V, Terol J, Talon M, et al. 2015. A phylogenetic analysis of 34 chloroplast genomes elucidates the relationships between wild and domestic species within the genus Citrus. Molecular Biology and Evolution 32:2015−35

doi: 10.1093/molbev/msv082
[31]

Han P, Yin T, Xi D, Yang X, Zhang M, et al. 2023. Genome-wide identification of the sweet orange bZIP gene family and analysis of their expression in response to infection by Penicillium digitatum. Horticulturae 9:393

doi: 10.3390/horticulturae9030393
[32]

Wang N, Li C, Kuang L, Wu X, Xie K, et al. 2022. Pan-mitogenomics reveals the genetic basis of cytonuclear conflicts in citrus hybridization, domestication, and diversification. Proceedings of the National Academy of Sciences of the United States of America 119:e2206076119

doi: 10.1073/pnas.2206076119
[33]

Wang L, Dong WP, Zhou SL. 2012. Structural mutations and reorganizations in chloroplast genomes of flowering plants. Acta Botanica Boreali-Occidentalia Sinica 32(6):1282−88

doi: 10.3969/j.issn.1000-4025.2012.06.031
[34]

Zhang Y, Zhang JW, Yang Y, Li XN. 2019. Structural and comparative analysis of the complete chloroplast genome of a mangrove plant: Scyphiphora hydrophyllacea Gaertn. f. and related Rubiaceae species. Forests 10:1000

doi: 10.3390/f10111000
[35]

Li Y, Zhang J, Li L, Gao L, Xu J, et al. 2018. Structural and comparative analysis of the complete chloroplast genome of Pyrus hopeiensis—"wild plants with a tiny population"—and three other Pyrus species. International Journal of Molecular Sciences 19:3262

doi: 10.3390/ijms19103262
[36]

Xu SW. 2011. Dehong prefecture − very valuable health fruit. Yunnan Agriculture 2011(2):26−27

doi: 10.3969/j.issn.1005-1627.2011.02.018
[37]

Jiang JM, Jia BY, Fan DQ, Tian YP, Xiao LB, et al. 1984. Wild white lemon in Libo County. Wild Plant Resources in China 1:26−27

[38]

Zhou L, Duan Y, Wen B, Ma YC, Zhu XJ, et al. 2018. SNP molecular markers and their application to genetic breeding of woody plants. Subtropical Plant Science 47:187−93

doi: 10.3969/j.issn.1009-7791.2018.02.018
[39]

Wan Q, Zhang YL, Wang SD, He SC, Wen ZQ. 2021. Selection methods for labeled SNP sets in genome-wide association studies. Mathematical Modeling and its Applications 10(3):44−53+69

doi: 10.19943/j.2095-3070.jmmia.2021.03.06
[40]

Gao Y, Wang DJ, Wang K, Cong PH, Li LW, et al. 2020. Kinship and genetic structure analysis of 15 plant resources of the genus Apple based on high-density SNP markers. Chinese Agricultural Science 53(16):3333−43

doi: 10.3864/j.issn.0578-1752.2020.16.011
[41]

Yan JW, Xiao TJ, Yuan QF, Xie P, Peng ZJ, et al. 2018. SSR and SNP polymorphism analysis based on Hylocereus polyrhizus transcriptome. Chinese Journal of Tropical Crops 39:1338−43

doi: 10.3969/j.issn.1000-2561.2018.07.012
[42]

Verma SK, Kumar LK, Thumar M, Kumar TVC, Vedamurthy VG, et al. 2024. A synonymous single nucleotide polymorphism (g.36417726C>A) in the Lama2 gene influencing fat deposition is associated with post-partum anestrus interval in Murrah buffalo. Gene 896:148032

doi: 10.1016/j.gene.2023.148032
[43]

Jing Y, Zhao X, Wang J, Teng W, Qiu L, et al. 2018. Identification of the genomic region underlying seed weight per plant in soybean (Glycine max L. Merr.) via high-throughput single-nucleotide polymorphisms and a genome-wide association study. Frontiers in Plant Science 9:1392

doi: 10.3389/fpls.2018.01392
[44]

Chen S, Guo Y, Yang C, Li Y. 2018. Review on single nucleotide polymorphisms application in tea plant (Camellia sinensis). Journal of Food Safety and Quality 9(2):243−47

doi: 10.3969/j.issn.2095-0381.2018.02.005
[45]

Akter S, Huq MA, Jung YJ, Cho YG, Kang KK. 2016. Application of single nucleotide polymorphism markers for selection of male sterility in crop plants. Plant Breeding and Biotechnology 4:379−86

doi: 10.9787/PBB.2016.4.4.379
[46]

Li C, Bai G, Carver BF, Chao S, Wang Z. 2016. Mapping quantitative trait loci for plant adaptation and morphology traits in wheat using single nucleotide polymorphisms. Euphytica 208:299−312

doi: 10.1007/s10681-015-1594-x
[47]

Sasaki Y, Fushimi H, Komatsu K. 2004. Application of single-nucleotide polymorphism analysis of the trnK gene to the identification of Curcuma plants. Biological and Pharmaceutical Bulletin 27:144−46

doi: 10.1248/bpb.27.144
[48]

Soleimani VD, Baum BR, Johnson DA. 2003. Efficient validation of single nucleotide polymorphisms in plants by allele-specific PCR, with an example from barley. Plant Molecular Biology Reporter 21:281−88

doi: 10.1007/BF02772803
[49]

Li M, Guo DL, Liu CH, Zhang YH. 2011. EST-SNP developed software feature analysis and comparison. Chemistry of Life 31:906−11

[50]

Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, et al. 2006. Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genetics & Genomes 2:202−24

doi: 10.1007/s11295-006-0045-1
[51]

Yamamoto T, Yamaguchi M, Hayashi T. 2005. An integrated genetic linkage map of peach by SSR, STS, AFLP and RAPD. Journal of the Japanese Society for Horticultural Science 74:204−13

doi: 10.2503/jjshs.74.204
[52]

Kijas JMH, Thomas MR, Fowler JCS, Roose ML. 1997. Integration of trinucleotide microsatellites into a linkage map of Citrus. Theoretical and Applied Genetics 94:701−06

doi: 10.1007/s001220050468
[53]

Dalbó MA, Ye GN, Weeden NF, Steinkellner H, Sefc KM, et al. 2000. A gene controlling sex in grapevines placed on a molecular marker-based genetic map. Genome 43:333−40

doi: 10.1139/g99-136
[54]

Vilanova S, Romero C, Abbott AG, Llácer G, Badenes ML. 2003. An apricot (Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP markers, mapping plum pox virus resistance and self-incompatibility traits. Theoretical and Applied Genetics 107:239−47

doi: 10.1007/s00122-003-1243-y
[55]

Wang D, Karle R, Brettin TS, Iezzoni AF. 1998. Genetic linkage map in sour cherry using RFLP markers. Theoretical and Applied Genetics 97:1217−24

doi: 10.1007/s001220051013
[56]

Fauré S, Noyer JL, Horry JP, Bakry F, Lanaud C, et al. 1993. A molecular marker-based linkage map of diploid bananas (Musa acuminata). Theoretical and Applied Genetics 87:517−26

doi: 10.1007/BF00215098
[57]

Joobeur T, Periam N, de Vicente MC, King GJ, Arús P. 2000. Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649−55

doi: 10.1139/g00-040
[58]

Wang YY. 2019. The transcriptome-based development of radish SNP markers and their application in germplasm identification. Thesis. Nanjing Agricultural University, China.

[59]

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin.

[60]

Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology 21:241

doi: 10.1186/s13059-020-02154-5
[61]

Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31:3350−52

doi: 10.1093/bioinformatics/btv383
[62]

Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research 14:1394−403

doi: 10.1101/gr.2289704
[63]

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647−49

doi: 10.1093/bioinformatics/bts199
[64]

Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33:W686−W689

doi: 10.1093/nar/gki366
[65]

Rose R, Golosova O, Sukhomlinov D, Tiunov A, Prosperi M. 2019. Flexible design of multiple metagenomics classification pipelines with UGENE. Bioinformatics 35:1963−65

doi: 10.1093/bioinformatics/bty901
[66]

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research 41:W575−W581

doi: 10.1093/nar/gkt289