[1] |
USDA National Agricultural Statistics Service. 2021. Noncitrus fruits and nuts 2020 summary. USDA Report. https://downloads.usda.library.cornell.edu/usda-esmis/files/zs25x846c/sf269213r/6t054c23t/ncit0521.pdf |
[2] |
Mignard P, Beguería S, Giménez R, Fonti I Forcada C, Reig G, et al. 2002. Effects of genetics and climate on apple sugars and organic acid profiles. Agronomy 12:827 doi: 10.3390/agronomy12040827 |
[3] |
Khanal BP, Ikigu GM, Knoche M. 2019. Russeting partially restores apple skin permeability to water vapour. Planta 249:849−60 doi: 10.1007/s00425-018-3044-1 |
[4] |
Winkler A, Athoo T, Knoche M. 2022. Russeting of fruits: etiology and management. Horticulturae 8:231 doi: 10.3390/horticulturae8030231 |
[5] |
Kunihisa M, Moriya S, Abe K, Okada K, Haji T, et al. 2014. Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breeding Science 64:240−51 doi: 10.1270/jsbbs.64.240 |
[6] |
Lashbrooke J, Aharoni A, Costa F. 2015. Genome investigation suggests MdSHN3, an APETALA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and an inhibitor of russet development. Journal of Experimental Botany 66:6579−89 doi: 10.1093/jxb/erv366 |
[7] |
Falginella L, Cipriani G, Monte C, Gregori R, Testolin R, et al. 2015. A major QTL controlling apple skin russeting maps on the linkage group 12 of 'Renetta Grigia di Torriana'. BMC Plant Biology 15:150 doi: 10.1186/s12870-015-0507-4 |
[8] |
Powell AA, Kostick SA, Howard NP, Luby JJ. 2023. Elucidation and characterization of QTLs for russet formation on apple fruit in 'Honeycrisp'-derived breeding germplasm. Tree Genetics & Genomes 19:5 doi: 10.1007/s11295-022-01582-7 |
[9] |
Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, et al. 2012. Genomic selection for fruit quality traits in apple (Malus×domestica Borkh.). PLoS ONE 7:e36674 doi: 10.1371/journal.pone.0036674 |
[10] |
Jung M, Keller B, Roth M, Aranzana MJ, Auwerkerken A, et al. 2022. Genetic architecture and genomic predictive ability of apple quantitative traits across environments. Horticulture Research 9:uhac028 doi: 10.1093/hr/uhac028 |
[11] |
Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, et al. 2016. Genome to phenome mapping in apple using historical data. The Plant Genome 9:plantgenome2015.11.0113 doi: 10.3835/plantgenome2015.11.0113 |
[12] |
Minamikawa MF, Kunihisa M, Noshita K, Moriya S, Abe K, et al. 2021. Tracing founder haplotypes of Japanese apple varieties: application in genomic prediction and genome-wide association study. Horticulture Research 8:49 doi: 10.1038/s41438-021-00485-3 |
[13] |
Muranty H, Troggio M, Sadok IB, Rifaï MA, Auwerkerken A, et al. 2015. Accuracy and responses of genomic selection on key traits in apple breeding. Horticulture Research 2:15060 doi: 10.1038/hortres.2015.60 |
[14] |
Cazenave X, Petit B, Lateur M, Nybom H, Sedlak, et al. 2022. Combining genetic resources and elite material populations to improve the accuracy of genomic predictions in apple. G3 Genes|Genomes|Genetics 12:jkab420 doi: 10.1093/g3journal/jkab420 |
[15] |
Kostick SA, Bernardo R, Luby JJ. 2023. Genomewide selection for fruit quality traits in apple: breeding insights gained from prediction and postdiction. Horticulture Research 10:uhad088 doi: 10.1093/hr/uhad088 |
[16] |
Roth M, Muranty H, Di Guardo M, Guerra W, Patochhi A, et al. 2020. Genomic prediction of fruit texture and training population optimization towards the application of genomic selection in apple. Horticulture Reasearch 7:148 doi: 10.1038/s41438-020-00370-5 |
[17] |
Combs E, Bernardo R. 2013. Accuracy of genomewide selection for different traits with constant population size, heritability, and number of markers. The Plant Genome 6:plantgenome2012.11.0030 doi: 10.3835/plantgenome2012.11.0030 |
[18] |
Crossa J, Pérez-Rodríguez O, Cuevas J, Montesinos-López O, Jarquín D, et al. 2017. Genomic selection in plant breeding: methods, models, and perspectives. Trends in Plant Science 22:961−75 doi: 10.1016/j.tplants.2017.08.011 |
[19] |
Brown SK, Maloney K. 2011. US. Apple tree named 'New York 1'. US PP22,228 P3. |
[20] |
Bedford DS, Luby JJ. 2008. US. Apple tree named 'Minneiska'. US PP18, 812 P3. |
[21] |
Barritt, B. 2012. US. Apple tree named 'WA 38'. US PP24,210 P3. |
[22] |
Milkovich M. 2023. U. S. apple industry expects 250 million bushels in 2023. Good Fruit Grower. www.goodfruit.com/u-s-apple-industry-predicts-250-million-bushel-crop/?utm_source=New+Post+Hort+Show+List&utm_campaign=3c7e03ce64-fresh-bites-2023-08-18s&utm_medium=email&utm_term=0_-194d813140-%5BLIST_EMAIL_ID%5D |
[23] |
Wang Y, Çakır M. 2020. Welfare impacts of new demand-enhancing agricultural products: the case of Honeycrisp apples. Agricultural Economics 51:445−57 doi: 10.1111/agec.12564 |
[24] |
Luby JJ, Howard NP, Tillman JR, Bedford DS. 2022. Extended pedigrees of apple cultivars from the University of Minnesota Breeding Program elucidated using SNP array markers. HortScience 57:472−77 doi: 10.21273/HORTSCI16354-21 |
[25] |
Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, et al. 2012. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PLoS ONE 7:e31745 doi: 10.1371/journal.pone.0031745 |
[26] |
Bianco L, Cestaro A, Sargent DJ, Banchi E, Derdek S, et al. 2014. Development and validation of a 20K single nucleotide polymorphism (SNP) whole genome genotyping array for apple (Malus × domestica Borkh). PLoS ONE 9:e110377 doi: 10.1371/journal.pone.0110377 |
[27] |
Bernardo R. 2020. Simple software for genomewide prediction, linkage and association mapping, and quality control of marker data. Crop Science 60:515 doi: 10.1002/csc2.20013 |
[28] |
Bernardo R. 2014. Genomewide selection when major genes are known. Crop Science 54:68−75 doi: 10.2135/cropsci2013.05.0315 |
[29] |
Abebe AM, Kim Y, Kim J, Kim SL, Baek J. 2023. Image-based high-throughput phenotyping in horticultural crops. Plants 12:2061 doi: 10.3390/plants12102061 |