[1] |
Zhang B, Zhu W, Diao S, Wu X, Lu J, et al. 2019. The poplar pangenome provides insights into the evolutionary history of the genus. Communications Biology 2:215 doi: 10.1038/s42003-019-0474-7 |
[2] |
Bradshaw HD, Ceulemans R, Davis J, Stettler R. 2000. Emerging model systems in plant biology: poplar (Populus) as a model forest tree. Journal of Plant Growth Regulation 19:306−13 doi: 10.1007/s003440000030 |
[3] |
Brunner AM, Busov VB, Strauss SH. 2004. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends in Plant Science 9:49−56 doi: 10.1016/j.tplants.2003.11.006 |
[4] |
Wullschleger SD, Jansson S, Taylor G. 2002. Genomics and forest biology: Populus emerges as the perennial favorite. The Plant Cell 14:2651−55 doi: 10.1105/tpc.141120 |
[5] |
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596−604 doi: 10.1126/science.1128691 |
[6] |
Meinke DW, Cherry JM, Dean C, Rounsley SD, Koornneef M. 1998. Arabidopsis thaliana: a model plant for genome analysis. Science 282:662−82 doi: 10.1126/science.282.5389.662 |
[7] |
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796−815 doi: 10.1038/35048692 |
[8] |
Goff SA, Ricke D, LanTH, Presting G, Wang R, et al. 2005. Erratum: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92−100 doi: 10.1126/science.309.5736.879b |
[9] |
Ma J, Wan D, Duan B, Bai X, Bai Q, et al. 2019. Genome sequence and genetic transformation of a widely distributed and cultivated poplar. Plant Biotechnology Journal 17:451−60 doi: 10.1111/pbi.12989 |
[10] |
Zhang Z, Chen Y, Zhang J, Ma X, Li Y, et al. 2020. Improved genome assembly provides new insights into genome evolution in a desert poplar (Populus euphratica). Molecular Ecology Resources 20:781−94 doi: 10.1111/1755-0998.13142 |
[11] |
Lin YC, Wang J, Delhomme N, Schiffthaler B, Sundström G, et al. 2018. Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen. Proceedings of the National Academy of Sciences of the United States of America 115:E10970−E10978 doi: 10.1073/pnas.1801437115 |
[12] |
Chen Z, Ai F, Zhang J, Ma X, Yang W, et al. 2020. Survival in the Tropics despite isolation, inbreeding and asexual reproduction: insights from the genome of the world's southernmost poplar (Populus ilicifolia). The Plant Journal 103:430−42 doi: 10.1111/tpj.14744 |
[13] |
Yang W, Wang K, Zhang J, Ma J, Liu J, et al. 2017. The draft genome sequence of a desert tree Populus pruinosa. GigaScience 6:gix075 doi: 10.1093/gigascience/gix075 |
[14] |
An X, Gao K, Chen Z, Li J, Yang X, et al. 2022. High quality haplotype-resolved genome assemblies of Populus tomentosa Carr., a stabilized interspecific hybrid species widespread in Asia. Molecular Ecology Resources 22:786−802 doi: 10.1111/1755-0998.13507 |
[15] |
Huang X, Chen S, Peng X, Bae EK, Dai X, et al. 2021. An improved draft genome sequence of hybrid Populus alba × Populus glandulosa. Journal of Forestry Research 32:1663−72 doi: 10.1007/s11676-020-01235-2 |
[16] |
Chen S, Yu Y, Wang X, Wang S, Zhang T, et al. 2023. Chromosome-level genome assembly of a triploid poplar Populus alba 'Berolinensis'. Molecular Ecology Resources 23:1092−107 doi: 10.1111/1755-0998.13770 |
[17] |
Ambardar S, Gupta R, Trakroo D, Lal R, Vakhlu J. 2016. High throughput sequencing: an overview of sequencing chemistry. Indian Journal of Microbiology 56:394−404 doi: 10.1007/s12088-016-0606-4 |
[18] |
Daccord N, Celton JM, Linsmith G, Becker C, Choisne N, et al. 2017. High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development. Nature Genetics 49:1099−106 doi: 10.1038/ng.3886 |
[19] |
Shi X, Cao S, Wang X, Huang S, Wang Y, et al. 2023. The complete reference genome for grapevine (Vitis vinifera L.) genetics and breeding. Horticulture Research 10:uhad061 doi: 10.1093/hr/uhad061 |
[20] |
Maluszynski M, Kasha KJ, Szarejko I. 2003. Published doubled haploid protocols in plant species. In Doubled Haploid Production in Crop Plants, eds Maluszynski M, Kasha KJ, Forster BP, Szarejko I. Dordrecht: Springer. pp. 309−35. https://doi.org/10.1007/978-94-017-1293-4_46 |
[21] |
Aboobucker SI, Jubery TZ, Frei UK, Chen YR, Foster T, et al. 2022. Protocols for in vivo doubled haploid (DH) technology in maize breeding: from haploid inducer development to haploid genome doubling. In Haploid Inducer Development to Haploid Genome Doubling, ed. Lambing C. New York, NY: Humana. 2484: 213–35. https://doi.org/10.1007/978-1-0716-2253-7_16 |
[22] |
Zhong Y, Chen B, Wang D, Zhu X, Li M, et al. 2022. In vivo maternal haploid induction in tomato. Plant Biotechnology Journal 20:250−52 doi: 10.1111/pbi.13755 |
[23] |
Cistué L, Vallés M, Echávarri B, Sanz JM, Castillo A. 2003. Barley anther culture. In Doubled Haploid Production in Crop Plants, eds Maluszynski M, Kasha KJ, Forster BP, Szarejko I. Dordrecht: Springer. pp. 29–34. https://doi.org/10.1007/978-94-017-1293-4_5 |
[24] |
Zhao X, Yuan K, Liu Y, Zhang N, Yang L, et al. 2022. In vivo maternal haploid induction based on genome editing of DMP in Brassica oleracea. Plant Biotechnology Journal 20:2242−44 doi: 10.1111/pbi.13934 |
[25] |
Pendleton M, Sebra R, Pang AWC, Ummat A, Franzen O, et al. 2015. Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nature Methods 12:780−86 doi: 10.1038/nmeth.3454 |
[26] |
Lieberman-Aiden E, Van Berkum NL, Williams L, Imakaev M, Ragoczy T, et al. 2009. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289−93 doi: 10.1126/science.1181369 |
[27] |
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. 2021. Nanopore sequencing technology, bioinformatics and applications. Nature Biotechnology 39:1348−65 doi: 10.1038/s41587-021-01108-x |
[28] |
Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5:833−45 doi: 10.1038/s41477-019-0487-8 |
[29] |
Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210−12 doi: 10.1093/bioinformatics/btv351 |
[30] |
Flynn JM, Hubley R, Goubert C, Rosen J, Clark AG, et al. 2020. RepeatModeler2 for automated genomic discovery of transposable element families. Proceedings of the National Academy of Sciences of the United States of America 117:9451−57 doi: 10.1073/pnas.1921046117 |
[31] |
Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols in Bioinformatics doi: 10.1002/0471250953.bi0410s25 |
[32] |
Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research 35:W265−W268 doi: 10.1093/nar/gkm286 |
[33] |
Hu K, Liao X, Zou Y, Wang J. 2021. Accelerating RepeatClassifier based on spark and greedy algorithm with dynamic upper boundary. bioRxiv doi: 10.1101/2021.06.03.446998 |
[34] |
Shao B, Wang H, Li Y. Trinity: a distributed graph engine on a memory cloud. Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, USA, 2013. pp. 505–16. New York, NY, United States: Association for Computing Machinery. https://doi.org/10.1145/2463676.2467799. |
[35] |
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK Jr, et al. 2003. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Research 31:5654−66 doi: 10.1093/nar/gkg770 |
[36] |
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, et al. 2008. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biology 9:R7 doi: 10.1186/gb-2008-9-1-r7 |
[37] |
Lin Y, Ye C, Li X, Chen Q, Wu Y, et al. 2023. quarTeT: a telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification. Horticulture Research 10:uhad127 doi: 10.1093/hr/uhad127 |
[38] |
Gao S, Yang X, Guo H, Zhao X, Wang B, et al. 2023. HiCAT: a tool for automatic annotation of centromere structure. Genome Biology 24:58 doi: 10.1186/s13059-023-02900-5 |
[39] |
Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238 doi: 10.1186/s13059-019-1832-y |
[40] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80 doi: 10.1093/molbev/mst010 |
[41] |
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453−55 doi: 10.1093/bioinformatics/btz305 |
[42] |
Sanderson MJ. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301−02 doi: 10.1093/bioinformatics/19.2.301 |
[43] |
Manchester SR, Dilcher DL, Tidwell WD. 1986. Interconnected reproductive and vegetative remains of populus (Salicaceae) from the middle Eocene green river formation, northeastern Utah. American Journal of Botany 73:156−60 doi: 10.1002/j.1537-2197.1986.tb09691.x |
[44] |
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74 doi: 10.1093/molbev/msu300 |
[45] |
Zhang Z, Li J, Zhao X, Wang J, Wong G, et al. 2006. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genomics Proteomics Bioinformatics 4:259−63 doi: 10.1016/S1672-0229(07)60007-2 |
[46] |
Ginestet C. 2011. ggplot2: Elegant graphics for data analysis. Journal of the Royal Statistical Society A: Statistics in Society 174:245−46 doi: 10.1111/j.1467-985X.2010.00676_9.x |
[47] |
Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, et al. 2018. MUMmer4: a fast and versatile genome alignment system. PLoS Computational Biology 14:e1005944 doi: 10.1371/journal.pcbi.1005944 |
[48] |
Goel M, Sun H, Jiao WB, Schneeberger K. 2019. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biology 20:277 doi: 10.1186/s13059-019-1911-0 |
[49] |
Goel M, Schneeberger K. 2022. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics 38:2922−26 doi: 10.1093/bioinformatics/btac196 |
[50] |
Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293 |
[51] |
Shakirov EV, Chen JJL, Shippen DE. 2022. Plant telomere biology: the green solution to the end-replication problem. The Plant Cell 34:2492−504 doi: 10.1093/plcell/koac122 |
[52] |
Lampson MA, Cheeseman IM. 2011. Sensing centromere tension: Aurora B and the regulation of kinetochore function. Trends in Cell Biology 21:133−40 doi: 10.1016/j.tcb.2010.10.007 |
[53] |
Naish M, Alonge M, Wlodzimierz P, Tock AJ, Abramson BW, et al. 2021. The genetic and epigenetic landscape of the Arabidopsis centromeres. Science 374:abi7489 doi: 10.1126/science.abi7489 |
[54] |
Song J, Xie W, Wang S, Guo Y, Koo D, et al. 2021. Two gap-free reference genomes and a global view of the centromere architecture in rice. Molecular Plant 14:1757−67 doi: 10.1016/j.molp.2021.06.018 |
[55] |
Su H, Liu Y, Liu Y, Birchler JA, Han F. 2018. The behavior of the maize B chromosome and centromere. Genes 9:476 doi: 10.3390/genes9100476 |
[56] |
Dvorkina T, Kunyavskaya O, Bzikadze AV, Alexandrov I, Pevzner PA. 2021. CentromereArchitect: inference and analysis of the architecture of centromeres. Bioinformatics 37:i196−i204 doi: 10.1093/bioinformatics/btab265 |
[57] |
Xin H, Zhang T, Wu Y, Zhang W, Zhang P, et al. 2020. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. The Plant Journal 101:253−64 doi: 10.1111/tpj.14536 |
[58] |
Stettler R, Bradshaw H, Heilman P, Hinckley T. 1996. Biology of Populus and its implications for management and conservation. Ottawa, Ontario, Canada: NRC Research Press. 539 pp. |
[59] |
Qin L, Hu Y, Wang J, Wang X, Zhao R, et al. 2021. Insights into angiosperm evolution, floral development and chemical biosynthesis from the Aristolochia fimbriata genome. Nature Plants 7:1239−53 doi: 10.1038/s41477-021-00990-2 |
[60] |
Gao B, Chen M, Li X, Liang Y, Zhu F, et al. 2018. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. BMC Plant Biology 18:256 doi: 10.1186/s12870-018-1437-8 |
[61] |
Wang H, Pak S, Yang J, Wu Y, Li W, et al. 2022. Two high hierarchical regulators, PuMYB40 and PuWRKY75, control the low phosphorus driven adventitious root formation in Populus ussuriensis. Plant Biotechnology Journal 20:1561−77 doi: 10.1111/pbi.13833 |
[62] |
Fan Q, Fu Y. 2017. Telomere and centromere—DNA tandem arrays on the chromosome. Chinese Science Bulletin 62:3245−55 doi: 10.1360/N972016-01145 |
[63] |
Wu H, Yao D, Chen Y, Yang W, Zhao W, et al. 2020. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections. G3 Genes|Genomes|Genetics 10:455−66 doi: 10.1534/g3.119.400913 |
[64] |
Stults DM, Killen MW, Pierce HH, Pierce AJ. 2008. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Research 18:13−18 doi: 10.1101/gr.6858507 |
[65] |
Miga KH. 2020. Centromere studies in the era of 'telomere-to-telomere' genomics. Experimental Cell Research 394:112127 doi: 10.1016/j.yexcr.2020.112127 |