[1] |
Sheikh M, Fakhrul I, Zahurul K. 2020 World's demand for food and water. In Desalination - Challenges and Opportunities, eds. Hossein Davood Abadi Farahani M, Vahid Vatanpour, Amir Taheri. IntechOpen. https://doi.org/10.5772/intechopen.85919 |
[2] |
Khan MA, Tahir A, Khurshid N, Husnain MIu, Ahmed M, et al. 2020. Economic effects of climate change-induced loss of agricultural production by 2050: A case study of Pakistan. Sustainability 12:1216 doi: 10.3390/su12031216 |
[3] |
Agovino M, Casaccia M, Ciommi M, Ferrara M, Marchesano K. 2019. Agriculture, climate change and sustainability: The case of EU-28. Journal of Ecological Indicators 105:525−543 doi: 10.1016/j.ecolind.2018.04.064 |
[4] |
Seydi ST, Amani M, Ghorbanian A. 2022. A dual attention Convolutional Neural Network for Crop classification Using Time-Series Sentinel-2 Imagery. Journal of Remote Sensing 14:498 doi: 10.3390/rs14030498 |
[5] |
Khan HR, Gillani Z, Jamal MH, Athar A, Chaudhry MT, et al. 2023. Early identification of crop type for smallholder farming systems using deep learning on time-series Sentinel-2 Imagery. Sensors 52;3(4):1779 doi: 10.3390/s23041779 |
[6] |
Ashapure A, Jung J, Yeom J, Chang A, Maeda M, et al. 2019. A novel framework to detect conventional tillage and no-tillage cropping system effect on cotton growth and development using multi-temporal UAS data. ISPRS Journal of Photogrammetry and Remote Sensing 152:49−64 doi: 10.1016/j.isprsjprs.2019.04.003 |
[7] |
Ajayi OG, Ashi J, Guda B. 2023. Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images. Smart Agricultural Technology 5:100231 doi: 10.1016/j.atech.2023.100231 |
[8] |
Reedha R, Dericquebourg E, Canals R, Hafiane A. 2022. Transformer neural network and crop classification of high resolution UAV images. Journal of Remote Sensing 14(3):592 doi: 10.3390/rs14030592 |
[9] |
Bhuyar N, Acharya S, Theng D. 2020. Crop classification with multi-temporal satellite image data. International Journal of Engineering Research & Technology 9(6):221−25 doi: 10.17577/ijertv9is060208 |
[10] |
Weiss M, Jacob F, Duveiller G. 2020. Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment 236:111402 doi: 10.1016/j.rse.2019.111402 |
[11] |
Donohue RJ, Lawes RA, Mata G, Gobbett D, Ouzman J. 2018. Towards a national, remote-sensing-based model for predicting field-scale crop yield. Field Crops Research 227:79−90 doi: 10.1016/j.fcr.2018.08.005 |
[12] |
Kern A, Barcza Z, Marjanović H, Árendás T, Fodor N, Bónis P, Bognár P, Lichtenberger J. 2018. Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology 260-261:300−20 doi: 10.1016/j.agrformet.2018.06.009 |
[13] |
Ajayi OG, Ashi J. 2023. Effect of varying training epochs of a faster region-based convolutional neural network on the accuracy of an automatic weed classification scheme. Smart Agricultural Technology 3:100128 doi: 10.1016/j.atech.2022.100128 |
[14] |
Yang L, Chen J, Zhang R, Yang S, Zhang X, et al. 2023. Precise crop classification of UAV hyperspectral imagery using kernel tensor slice sparse coding based classifier. Neurocomputing 551:126487 doi: 10.1016/j.neucom.2023.126487 |
[15] |
Wu Z, Zhang J, Deng F, Zhang S, Zhang D, et al. 2021. Fusion of GF and MODIS data for regional-scale grassland community classification with EVI2 time-series and phenological features. Journal of Remote Sensing 13(5):835 doi: 10.3390/rs13050835 |
[16] |
Wang J, Wu B, Kohnen MV, Lin D, Yang C, et al. 2021. Classification of rice yield using UAV-based hyperspectral imagery and lodging feature. Plant Phenomics 2021:9765952 doi: 10.34133/2021/9765952 |
[17] |
Wang X, Zhang J, Xun L, Wang J, Wu Z, et al. 2022. Evaluating the effectiveness of machine learning and deep learning models combined time-series satellite data for multiple crop types classification over a large-scale region. Remote Sensing 14(10):2341 doi: 10.3390/rs14102341 |
[18] |
Zhong L, Hu L, Zhou H. 2019. Deep learning based multi-temporal crop classification. Remote Sensing of Environment 221:430−43 doi: 10.1016/j.rse.2018.11.032 |
[19] |
Kumar S, Jain A, Shukla AP, Singh S, Raja R, et al. 2021. A comparative analysis of machine learning algorithms for detection of organic and nonorganic cotton diseases. Mathematical Problems in Engineering 2021:1790171 doi: 10.1155/2021/1790171 |
[20] |
Fielding B, Zhang L. 2018. Evolving Image Classification Architectures with Enhanced Particle Swarm Optimisation. IEEE Access 6:68560−75 doi: 10.1109/ACCESS.2018.2880416 |
[21] |
Ajayi OG, Oruma E. 2022. On the applicability of integrated UAV photogrammetry and automatic feature extraction for cadastral mapping. Advances in Geodesy and Geoinformation 71(1):1−24 doi: 10.24425/gac.2022.141172 |
[22] |
Ajayi OG. 2023. Application of Machine intelligence in Smart Societies: A critical review of the opportunities and risks. In Machine Intelligence for Smart Applications. Studies in Computational Intelligence, eds. Adadi A, Motahhir S. vol. 1105. Cham: Springer. pp. 1−17. https://doi.org/10.1007/978-3-031-37454-8_1 |
[23] |
Lu HX, He J, Liu L. 2019. Discussion on multispectral remote sensing image classification integrating object-oriented image analysis and KNN algorithm. Technological Innovation and Application 11:27−30 doi: 10.3969/j.issn.2095-2945.2019.11.007 |
[24] |
Yuan PS, Yang CL, Song YH, Zhai ZY, Xu HL. 2019. Classification of rice phenotypic omics entities based on stacking integrated learning. Transactions of the Chinese Society for Agricultural Machinery 50(11):144−52 doi: 10.6041/j.issn.1000-1298.2019.11.016 |
[25] |
Löw F, Michel U, Dech S, Conrad C. 2013. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote Sensing 85:102−119 doi: 10.1016/j.isprsjprs.2013.08.007 |
[26] |
Saini R, Ghosh SK. 2018. Crop classification on single date sentinel-2 imagery using random forest and suppor vector machine. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 42:683−88 doi: 10.5194/isprs-archives-xlii-5-683-2018 |
[27] |
Maponya MG, van Niekerk A, Mashimbye ZE. 2020. Pre-harvest classification of crop types using a Sentinel-2 time-series and machine learning. Journal of Computers and Electronics in Agriculture 169:105164 doi: 10.1016/j.compag.2019.105164 |
[28] |
Ajayi OG, Opaluwa YD, Ashi J, Zikirullahi WM. 2022. Applicability of artificial neural network for automatic crop type classification on UAV-based images. Environmental Technology and Science Journal 13(1):57−72 doi: 10.4314/etsj.v13i1.5 |
[29] |
Seydi ST, Hasanlou M, Amani M, Huang W. 2021. Oil spill detection based on multiscale multidimensional residual CNN for optical remote sensing imagery. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 14:10941−52 doi: 10.1109/JSTARS.2021.3123163 |
[30] |
Koirala A, Walsh KB, Wang Z, McCarthy C. 2019. Deep learning – Method overview and review of use for fruit detection and yield estimation. Computers and Electronics in Agriculture 162:219−34 doi: 10.1016/j.compag.2019.04.017 |
[31] |
Wan X, Zhao C, Wang Y, Liu W. 2017. Stacked sparse autoencoder in hyperspectral data classification using spectral-spatial, higher order statistics and multifractal spectrum features. Infrared Physics & Technology 86:77−89 doi: 10.1016/j.infrared.2017.08.021 |
[32] |
Yao G, Lei T, Zhong J. 2019. A review of convolutional-neural-network-based action recognition. Pattern Recognition Letters 118:14−22 doi: 10.1016/j.patrec.2018.05.018 |
[33] |
Dhillon A, Verma GK. 2020. Convolutional neural network: a review of models, methodologies and applications to object detection. Progress in Artificial Intelligence 9(2):85−112 doi: 10.1007/s13748-019-00203-0 |
[34] |
Ajayi OG, Ojima A. 2022. Performance evaluation of selected cloud occlusion removal algorithms on remote sensing imagery. Remote Sensing Applications: Society and Environment 25:100700 doi: 10.1016/j.rsase.2022.100700 |
[35] |
Alzubaidi L, Zhang J, Humaidi AJ, Al-Dujaili A, Duan Y, et al. 2021. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data 8:53 doi: 10.1186/s40537-021-00444-8 |
[36] |
Muhammad NA, Nasir AA, Ibrahim Z, Sabri N. 2018. Evaluation of CNN, AlexNet and GoogleNet for fruit recognition. ndonesian Journal of Electrical Engineering and Computer Science 12(2):468−75 doi: 10.11591/ijeecs.v12.i2.pp468-475 |
[37] |
Sabri N, AbdulAziz Z, Ibrahim Z, Akmal Rasydan Bin Mohd Rosni M, Hafiz bin Abd Ghapul A. 2018. Comparing convolution neural network models for leaf recognition. International Journal of Engineering and Technology (IJET) 7:141−44 doi: 10.14419/ijet.v7i3.15.17518 |
[38] |
Zhao H, Duan S, Liu J, Sun L, Reymondin L. 2021. Evaluation of five deep learning models for crop type mapping using sentinel-2 time series images with missing information. Remote Sensing 13(14):2790 doi: 10.3390/rs13142790 |
[39] |
Ji S, Zhang C, Xu A, Shi Y, Duan Y. 2018. 3D convolutional neural networks for crop classification with multi-temporal remote sensing images. Remote Sensing 10:75 doi: 10.3390/rs10010075 |
[40] |
Liu N, Zhao Q, Williams R, Barrett B. 2023. Enhanced crop classification through integrated optical and SAR data: a deep learning approach for multi-source image fusion. International Journal of Remote Sensing 00:1−29 doi: 10.1080/01431161.2023.2232552 |
[41] |
Ajayi OG, Olufade OO. 2023. Drone-based crop type identification with convolutional neural networks: an evaluation of the performance of RESNET architectures. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences X-1/W1-2023:991−98 doi: 10.5194/isprs-annals-X-1-W1-2023-991-2023 |
[42] |
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436−44 doi: 10.1038/nature14539 |
[43] |
Pandey A, Jain K. 2022. An intelligent system for crop identification and classification from UAV images using conjugated dense convolutional neural network. Journal of Computers and Electronics in Agriculture 192:106543 doi: 10.1016/j.compag.2021.106543 |
[44] |
Kalita I, Singh GP, Roy M. 2023. Crop classification using aerial images by analyzing an ensemble of DCNNs under multi-filter & multi-scale framework. Multimedia Tools and Applications 82:18409−33 doi: 10.1007/s11042-022-13946-1 |
[45] |
Khan A, Sohail A, Zahoora U, Qureshi AS. 2020. A survey of the recent architectures of deep convolutional neural networks. Artificial Intelligence Review 53(8):5455−516 doi: 10.1007/s10462-020-09825-6 |
[46] |
Krishna K. 2023. Plant disease classification using Alex Net. Research Square Preprint doi: 10.21203/rs.3.rs-2612739/v1 |
[47] |
Ong P, Teo KS, Sia CK. 2023. UAV-based weed detection in Chinese cabbage using deep learning. Smart Agricultural Technology 4:100181 doi: 10.1016/j.atech.2023.100181 |
[48] |
Lv M, Zhou G, He M, Chen A, Zhang W, et al. 2020. Maize leaf disease identification based on feature enhancement and DMS-Robust Alexnet. IEEE Access 8:57952−57966 doi: 10.1109/ACCESS.2020.2982443 |
[49] |
Krizhevsky A, Sutskever I, Hinton GE. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6):84−90 doi: 10.1145/3065386 |
[50] |
Lakshmanarao A, Babu MR, Kiran TSR. 2021. Plant disease prediction and classification using deep learning ConvNets. International Conference on Artificial Intelligence and Machine Vision (AIMV), Gandhinagar, India, 24-26 September 2021. pp. 1−6. https://doi.org/10.1109/AIMV53313.2021.9670918 |
[51] |
Arya S, Singh R. 2019. A comparative study of CNN and AlexNet for detection of disease in potato and mango leaf. International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad, India, 27−28 September 2019. USA: IEEE. pp. 1−6. https://doi.org/10.1109/ICICT46931.2019.8977648 |
[52] |
Kayadibi I, Güraksın GE, Ergün U, Özmen Süzme N. 2022. An eye state recognition system using transfer learning: AlexNet-based deep convolutional neural network. International Journal of Computational Intelligence Systems 15:49 doi: 10.1007/s44196-022-00108-2 |