[1] |
Parveen G, Noreen R, Shafique HA, Sultana V, Ehteshamul-Haque S, et al. 2019. Role of rhizobia in suppressing the root diseases of soybean under soil amendment. Planta Daninha 37:1−8 doi: 10.1590/s0100-83582019370100038 |
[2] |
Nakei MD, Venkataramana PB, Ndakidemi PA. 2022. Soybean-nodulating rhizobia: ecology, characterization, diversity, and growth promoting functions. Frontiers in Sustainable Food Systems 6:824444 doi: 10.3389/fsufs.2022.824444 |
[3] |
Shakeel Q, Bajwa RT, Raheel M, Ali S, Iftikhar Y, et al. 2022. Microbial biostimulants as fungicides against root-borne pathogens. Microbial Biostimulants for Sustainable Agriculture and Environmental Bioremediation. Boca Raton: CRC Press: 39−51 https://doi.org/10.1201/9781003188032-4 |
[4] |
Farhat H, Urooj F, Shafique HA, Sultana V, Ehteshamul-Haque S. 2017. Rhizobia suppress the root knot nematode and root rotting fungi on Mungbean. International Journal of Biological Research 5(2):71−75 |
[5] |
Naseri B, Ansari Hamadani S. 2017. Characteristic agro-ecological features of soil populations of bean root rot pathogens. Rhizosphere 3:203−8 doi: 10.1016/j.rhisph.2017.05.005 |
[6] |
Al-Ani RA, Adhab MA, Mahdi MH, Abood HM. 2012. Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Protection Science 48:149−55 doi: 10.17221/16/2012-pps |
[7] |
Kalantari S, Marefat A, Naseri B, Hemmati R. 2018. Improvement of bean yield and Fusarium root rot biocontrol using mixtures of Bacillus, Pseudomonas and Rhizobium. Tropical Plant Pathology 43:499−505 doi: 10.1007/s40858-018-0252-y |
[8] |
Yang XB, Feng F. 2001. Ranges and diversity of soybean fungal diseases in North America. Phytopathology® 91:769−75 doi: 10.1094/phyto.2001.91.8.769 |
[9] |
Naseri B, Younesi H. 2021. Beneficial microbes in biocontrol of root rots in bean crops: a meta-analysis (1990–2020). Physiological and Molecular Plant Pathology 116:101712 doi: 10.1016/j.pmpp.2021.101712 |
[10] |
Das K, Prasanna R, Saxena AK. 2017. Rhizobia: a potential biocontrol agent for soilborne fungal pathogens. Folia Microbiologica 62:425−35 doi: 10.1007/s12223-017-0513-z |
[11] |
Afzal S, Tariq S, Sultana V, Ara J, Ehteshamul-Haque S. 2013. Managing the root diseases of okra with endo-root plant growth promoting pseudomonas and trichoderma viride associated with healthy okra roots. Pakistan Journal of Botany 45(4):1455−60 |
[12] |
Tabande L, Naseri B. 2020. How strongly is rhizobial nodulation associated with bean cropping system? Journal of Plant Protection Research 60(2):176−84 doi: 10.24425/jppr.2020.133307 |
[13] |
Singh DP, Prabha R. 2019. Microbial interventions in agriculture and environment. vol. 3. Singapore: Springer. https://doi.org/10.1007/978-981-32-9084-6 |
[14] |
Al-Jaradi A, Al-Mahmooli I, Janke R, Maharachchikumbura S, Al-Saady N, et al. 2018. Isolation and identification of pathogenic fungi and oomycetes associated with beans and cowpea root diseases in Oman. PeerJ 6:e6064 doi: 10.7717/peerj.6064 |
[15] |
Ji SH, Gururani MA, Chun SC. 2014. Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research 169:83−98 doi: 10.1016/j.micres.2013.06.003 |
[16] |
Tamiru G, Muleta D. 2018. The effect of rhizobia isolates against black root rot disease of faba bean (Vicia faba L.) caused by Fusarium solani. The Open Agriculture Journal 12:131−47 doi: 10.2174/1874331501812010131 |
[17] |
Nelson LE, Sommers DW. 1996. Organic carbon in soils. In Methods of Soil Analysis. pp. 570–71. |
[18] |
Thomas GW. 1982. Exchangeable cations. In Methods of Soil Analysis. pp. 159−65. |
[19] |
Motsara MR, Roy RN. 2008. Guide to laboratory establishment for plant nutrient analysis. Food and Agriculture Organization of the United Nations Rome. https://openknowledge.fao.org/server/api/core/bitstreams/e194f3d9-1bd1-40f0-9681-1a4a1be25acf/content |
[20] |
Bray RH, Kurtz LT. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59:39−46 doi: 10.1097/00010694-194501000-00006 |
[21] |
Msanya BM. 2012. Guide to General Rating of Some Chemical and Physical Soil. Morogoro, Tanzania: Department of Soil Science, Faculty of Agriculture, Sokoine University of Agriculture. pp. 1−3. |
[22] |
Sinegani AAS, Hosseinpur A. 2010. Evaluation of effect of different sterilization methods on soil biomass phosphorus extracted with NaHCO3. Plant, Soil and Environment 56:156−62 doi: 10.17221/86/2009-pse |
[23] |
Youseif SH, Abd El-Megeed FH, Ageez A, Mohamed ZK, Shamseldin A, et al. 2014. Phenotypic characteristics and genetic diversity of rhizobia nodulating soybean in Egyptian soils. European Journal of Soil Biology 60:34−43 doi: 10.1016/j.ejsobi.2013.10.008 |
[24] |
Win KT, Jiang CJ. 2021. A fresh weight-based method for evaluating soybean resistance to red crown root rot. Breeding Science 71:384−89 doi: 10.1270/jsbbs.20145 |
[25] |
Nakei MD, Venkataramana PB, Ndakidemi PA. 2023. Preliminary symbiotic performance of indigenous soybean (Glycine max)-nodulating rhizobia from agricultural soils of Tanzania. Frontiers in Sustainable Food Systems 6:1085843 doi: 10.3389/fsufs.2022.1085843 |
[26] |
Jaiswal SK, Mohammed M, Ibny FYI, Dakora FD. 2021. Rhizobia as a source of plant growth-promoting molecules: potential applications and possible operational mechanisms. Frontiers in Sustainable Food Systems 4:619676 doi: 10.3389/fsufs.2020.619676 |
[27] |
Al-Saedi SA, Razaq IB, Ali NA. 2016. Effect of soil textural classes on the biological nitrogen fixation by Bradyrhizobium measured by 15N dilution analysis. Baghdad Science Journal 13:0734 doi: 10.21123/bsj.13.4.734-744 |
[28] |
Zaharan HH. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiology and Molecular Biology Reviews 63(4):968−89 doi: 10.1128/MMBR.63.4.968-989.1999 |
[29] |
Palm CA, Giller KE, Mafongoya PL, Swift MJ. 2001. Management of organic matter in the tropics: translating theory into practice. Nutrient Cycling in Agroecosystems 61:63−75 doi: 10.1023/A:1013318210809 |
[30] |
Liu A, Contador CA, Fan K, Lam HM. 2018. Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Frontiers in Plant Science 9:1860 doi: 10.3389/fpls.2018.01860 |
[31] |
Wang H, Gu C, Liu X, Yang C, Li W, et al. 2020. Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Frontiers in Microbiology 11:750 doi: 10.3389/fmicb.2020.00750 |
[32] |
Abebe Z. 2017. On-farm Yield variability and Responses of Common bean (Phaseolus vulgaris L. ) Varieties to Rhizobium Inoculation with Inorganic Fertilizer Rates. Journal of Animal &Plant Sciences 32(2):5120−33 |
[33] |
Mmbaga GW, Mtei KM, Ndakidemi PA. 2014. Extrapolations on the use of Rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agricultural Sciences 5:1207−26 doi: 10.4236/as.2014.512130 |
[34] |
Kasper S, Christoffersen B, Soti P, Racelis A. 2019. Abiotic and biotic limitations to nodulation by leguminous cover crops in south texas. Agriculture 9:209 doi: 10.3390/agriculture9100209 |
[35] |
Rubio MC, Becana M, Sato S, James EK, Tabata S, et al. 2007. Characterization of genomic clones and expression analysis of the three types of superoxide dismutases during nodule development in Lotus japonicus. Molecular Plant-Microbe Interactions® 20:262−75 doi: 10.1094/mpmi-20-3-0262 |
[36] |
González-Guerrero M, Matthiadis A, Sáez Á, Long TA. 2014. Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Frontiers in Plant Science 5:45 doi: 10.3389/fpls.2014.00045 |
[37] |
Bonilla I, Bolaños L. Mineral nutrition for legume-rhizobia symbiosis: B, Ca, N, P, S, K, Fe, Mo, co, and Ni: A review. In Organic Farming, Pest Control and Remediation of Soil Pollutants, ed. Lichtfouse E. Dordrecht: Springer, 2009: 253-274. https://doi.org/10.1007/978-1-4020-9654-9_13 |
[38] |
Yuan K, Miwa H, Iizuka M, Yokoyama T, Fujii Y, et al. 2016. Genetic diversity and symbiotic phenotype of hairy vetch rhizobia in Japan. Microbes and Environments 31:121−26 doi: 10.1264/jsme2.me15184 |
[39] |
Capoen W, Den Herder J, Sun J, Verplancke C, De Keyser A, et al. 2009. Calcium spiking patterns and the role of the calcium/calmodulin-dependent kinase CCaMK in lateral root base nodulation of Sesbania rostrata. The Plant Cell 21:1526−40 doi: 10.1105/tpc.109.066233 |
[40] |
Debona D, Cruz MFA, Rodrigues FA. 2017. Calcium-triggered accumulation of defense-related transcripts enhances wheat resistance to leaf blast. Tropical Plant Pathology 42:309−14 doi: 10.1007/s40858-017-0144-6 |
[41] |
Alemayehu D, Zerihun A, Solomon B. 2018. Limitations and strategies to enhance biological nitrogen fixation in sub-humid tropics of Western Ethiopia. Journal of Agricultural Biotechnology and Sustainable Development 10:122−31 doi: 10.5897/jabsd2018.0318 |
[42] |
O'Hara GW. 2001. Nutritional constraints on root nodule bacteria affecting symbiotic nitrogen fixation: a review. Australian Journal of Experimental Agriculture 41:417 doi: 10.1071/ea00087 |
[43] |
Diniz AR, Santos da Silva C, Pereira MG, Zonta E, Fernandes DAC, et al. 2022. Influence of spatial variability of soil chemical attributes on the nutritional status and growth of the rubber tree. Bioscience Journal 38:e38052 doi: 10.14393/bj-v38n0a2022-54026 |
[44] |
Wakeel A, Farooq M, Qadir M, Schubert S. 2011. Potassium substitution by sodium in plants. Critical Reviews in Plant Sciences 30:401−13 doi: 10.1080/07352689.2011.587728 |
[45] |
Cardarelli M, Woo SL, Rouphael Y, Colla G. 2022. Seed treatments with microorganisms can have a biostimulant effect by influencing germination and seedling growth of crops. Plants 11:259 doi: 10.3390/plants11030259 |
[46] |
Ara J, Ehteshamul-Haque S. 2016. Role of mungbean root nodule associated fluorescent Pseudomonas and rhizobia in suppressing the root rotting fungi and root knot nematodes in chickpea (Cicer arietinum L.). Pakistan Journal of Botany 48(5):2139−45 |
[47] |
Hayat R, Ali S, Amara U, Khalid R, Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology 60:579−98 doi: 10.1007/s13213-010-0117-1 |
[48] |
Saharan BS, Nehra V. 2011. Plant growth promoting rhizobacteria: a critical review. Life Science and Medical Research 21(1):30 |
[49] |
Khaledi N, Taheri P. 2016. Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. Journal of Plant Protection Research 56(1):21−31 doi: 10.1515/jppr-2016-0004 |
[50] |
Imran H, Darine TH, Mohamed ELG. 2012. In vitro screening of soil bacteria for inhibiting phytopathogenic fungi. African Journal of Biotechnology 11(81):14660−70 |
[51] |
Dolatabadian A, Sanavy SAMM, Ghanati F, Gresshoff PM. 2012. Morphological and physiological response of soybean treated with the microsymbiont Bradyrhizobium japonicum pre-incubated with genistein. South African Journal of Botany 79:9−18 doi: 10.1016/j.sajb.2011.11.001 |
[52] |
Meena M, Swapnil P, Divyanshu K, Kumar S, Harish, et al. 2020. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: current perspectives. Journal of Basic Microbiology 60:828−61 doi: 10.1002/jobm.202000370 |