[1]

Shapiro CA, Wortmann CS. 2006. Corn response to nitrogen rate, row spacing, and plant density in Eastern Nebraska. Agronomy Journal 98:529−35

doi: 10.2134/agronj2005.0137
[2]

FAO. 2012. FAO Statistical Yearbook 2012 - Africa Food and Agriculture. Rome: FAO Statistical Databases (FAOSTAT). www.fao.org/3/i3137e/i3137e.pdf

[3]

Spallek T, Mutuku M, Shirasu K. 2013. The genus Striga: a witch profile. Molecular Plant Pathology 14:861−869

doi: 10.1111/mpp.12058
[4]

Food and Agriculture Organization of the United Nations (FAOSTAT). 2017. Database of crops and livestock products. www.fao.org/faostat/en/#data/QC (Accessed on 15 May 2018)

[5]

Central Statistics Agency (CSA). 2018. Report on area and production of crops of central statistics agency. Statistical Bulletin No. 586. Central Statistics Agency, Addis Ababa, Ethiopia. www.scirp.org/reference/referencespapers?referenceid=2952450

[6]

Wortmann CS, Mamo M, Abebe G, Mburu C, Kayuki KC, et al. 2006. The Atlas of Sorghum production in five countries of Eastern Africa. University of Nebraska, Lincoln, USA. https://a-cs.confex.com/crops/2007am/techprogram/P31232.HTM

[7]

Rich PJ, Grenier C, Ejeta G. 2004. Striga resistance in the wild relatives of sorghum. Crop Science 44:2221−29

doi: 10.2135/cropsci2004.2221
[8]

Ejeta G. 2007. Breeding for Striga resistance in sorghum: exploitation of intricate host parasite biology. Crop Science 47:216−27

doi: 10.2135/cropsci2007.04.0011ipbs
[9]

Ayongwa GC, Stomph TJ, Belder P, Leffelaar PA, Kuyper TW. 2011. Organic matter and seed survival of Striga hermonthica - Mechanisms for seed depletion in the soil. Crop Protection 30:1594−600

doi: 10.1016/j.cropro.2011.08.012
[10]

Nzioki HS, Oyosi F, Morris CE, Kaya E, Pilgeram AL, et al. 2016. Striga biocontrol on a toothpick: a readily deployable and inexpensive method for smallholder farmers. Frontiers in Plant Science 7:1121

doi: 10.3389/fpls.2016.01121
[11]

Bozkurt ML, Muth P, Parzies HK, Haussmann BIG. 2015. Genetic diversity of East and West African Striga hermonthica populations and virulence effects on a contrasting set of sorghum cultivars. Weed Research 55:71−81

doi: 10.1111/wre.12117
[12]

Hassan M, Gabar A, Babiker T. 2009. Effects of Bacterial Strains and Isolates on in Situ Germination, Subsequent Developmental Stage of Striga hermonthica onto Sorghum Roots. Advances in Environmental Biology 5:3263−69

[13]

Ahonsi MO, Berner DK, Emechebe AM, Lagoke ST. 2002. Selection of rhizobacterial strains for suppression of germination of Striga hermonthica (Del.) Benth. seeds. Biological Control 24:143−52

doi: 10.1016/S1049-9644(02)00019-1
[14]

Pilgeram AL, Sands DC. 2010. Bioherbicides. In Industrial Applications, ed. Hofrichter M. Berlin, Heidelberg: Springer Berlin Heidelberg. pp. 395−405. https://doi.org/10.1007/978-3-642-11458-8_19

[15]

Mounde LG. 2015. Understanding the role of plant growth promoting bacteria on sorghum growth and biotic suppression of Striga infestation. Thesis. University of Hohenheim, Stuttgart.

[16]

Neondo JO. 2017. Exploring biological control and transgenic weed management approaches against infestation by Striga hermonthica in Maize. Thesis. Jomo Kenyata University of Agriculture and Technology, Kenya.

[17]

Barillot CDC, Sarde CO, Bert V, Tarnaud E, Cochet N. 2013. A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Annals of Microbiology 63:471−76

doi: 10.1007/s13213-012-0491-y
[18]

Babalola O, Berner D, Amusa NA. 2007. Evaluation of some bacterial isolates as germination stimulants of Striga hermonthica. African Journal of Agricultural Research 2:27−30

[19]

Bakker AW, Schippers B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biology and Biochemistry 19:451−57

doi: 10.1016/0038-0717(87)90037-x
[20]

Thakuria D, Talukdar N, Goswami C, Hazarika S, Boro R, et al. 2004. Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Current Science 86:978−85

[21]

Berner DK, Ikie FO, Green JM. 1997. ALS-inhibiting herbicide seed treatments control Striga hermonthica in ALS-modified corn (Zea mays). Weed Technology 11:704−7

doi: 10.1017/S0890037X00043293
[22]

Rich PJ, Gobena D. 2016. Laboratory Manual for Screening Striga Resistance in Sorghum. Laboratory manual. Purdue University, USA.

[23]

Gafar NY, Hassan MM, Ahmed MM, Osman AG, Abdelgani ME, et al. 2015. In vitro study of endophytic bacteria, carbohydrates and their combination on early developmental stages of Striga hermonthica (Del.) Benth. Advances in Environmental Biology 10(6):66−74

[24]

Mohamed AH, Housley TL, Ejeta G. 2010. An in vitro technique for studying specific Striga resistance mechanisms in sorghum. African Journal of Agricultural Research 5:1868−75

[25]

Vashist H, Sharma D, Gupta A. 2013. A review on commonly used biochemical test for bacteria. Innovare Journal of Life Sciences, 1:1−7

[26]

Harley JP, Prescott LM. 2002. Laboratory Exercises in Microbiology. 5th Edition. New York: The McGraw−Hill Companies. pp. 466−502.

[27]

Atera EA, Itoh K, Azuma T, Ishii T. 2012. Response of NERICA rice to Striga hermonthica infections in western Kenya. International Journal of Agriculture and Biology 14:271−75

[28]

Kremer RJ, Kennedy AC. 1996. Rhizobacteria as biocontrol agents of weeds. Weed Technology 10:601−9

doi: 10.1017/S0890037X00040525
[29]

Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y. 2009. The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant and Soil 321:341−61

doi: 10.1007/s11104-008-9568-6
[30]

Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37:634−63

doi: 10.1111/1574-6976.12028
[31]

Schlaeppi K, Bulgarelli D. 2015. The plant microbiome at work. Molecular Plant-Microbe Interactions 28:212−17

doi: 10.1094/MPMI-10-14-0334-FI
[32]

Kremer R. 2007. Deleterious rhizobacteria. Plant-associated Bacteria, ed. Gnanamanickam SS. Dordrecht: Springer Netherlands. pp. 335−57. https://doi.org/10.1007/978-1-4020-4538-7_10

[33]

Schippers B, Bakker AW, Bakker PAHM, Van Peer R. 1990. Beneficial and deleterious effects of HCN-producing Pseudomonads on rhizosphere interactions. Plant and Soil 129:75−83

doi: 10.1007/BF00011693
[34]

Heydari S, Moghadam PR, Arab SM. 2008. Hydrogen cyanide production ability by Pseudomonas fluorescence bacteria and their inhibition potential on weed. Competition for Resources in a changing world: New drive for rural development, Tropentag, Hohenheim. http://www.tropentag.de/2008/abstracts/full/676.pdf

[35]

Kremer RJ, Souissi T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Current Microbiology 43:182−86

doi: 10.1007/s002840010284
[36]

Knowles CJ. 1976. Microorganisms and cyanide. Bacteriological Reviews 40:652−80

doi: 10.1128/br.40.3.652-680.1976
[37]

Castric PA. 1977. Glycine metabolism by Pseudomonas aeruginosa: hydrogen cyanide biosynthesis. Journal of Bacteriology 130:826−31

doi: 10.1128/jb.130.2.826-831.1977
[38]

Owen A, Zdor R. 2001. Effect of cyanogenic rhizobacteria on the growth of velvetleaf (Abutilon theophrasti) and corn (Zea mays) in autoclaved soil and the influence of supplemental glycine. Soil Biology and Biochemistry 33:801−9

doi: 10.1016/s0038-0717(00)00228-5
[39]

Grossmann K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science: formerly Pesticide Science 66:113−20

doi: 10.1002/ps.1860
[40]

Trognitz F, Hackl E, Widhalm S, Sessitsch A. 2016. The role of plant–microbiome interactions in weed establishment and control. FEMS Microbiology Ecology 92:fiw138

doi: 10.1093/femsec/fiw138
[41]

Kamei A, Dolai AK, Kamei A. 2014. Role of hydrogen cyanide secondary metabolite of plant growth promoting rhizobacteria as biopesticides of weeds. Global Journal of Science Frontier Research 14:109−12

[42]

Lakshmi V, Kumari S, Singh A, Prabha C. 2015. Isolation and characterization of deleterious Pseudomonas aeruginosa KC1 from rhizospheric soils and its interaction with weed seedlings. Journal of King Saud University Science 27:113−19

doi: 10.1016/j.jksus.2014.04.007
[43]

Begonia MFT, Kremer RJ. 1994. Chemotaxis of deleterious rhizobacteria to velvetleaf (Abutilon theophrasti Medik.) seeds and seedlings. FEMS Microbial Ecology 15:227−35

doi: 10.1111/j.1574-6941.1994.tb00246.x
[44]

Arshad M, Frankenberger WT. 1991. Microbial production of plant hormones. In The Rhizosphere and Plant Growth, eds. Keister DL, Cregan PB. Riverside, US: Kluwer Academic Publishers, University of California. pp. 327−34. https://doi.org/10.1007/978-94-011-3336-4_71

[45]

Damam M, Moinuddin MK, Kausar R. 2016. Isolation and screening of plant growth promoting actinomycetes from rhizosphere of some forest medicinal plants. International Journal of Chemtech Research 9:522−28

[46]

Shaik I, Janakiram P, Sujatha L, Chandra S. 2016. Isolation and identification of IAA producing endosymbiotic bacteria from Gracilaria corticata (J. Agardh). International Journal of Bioassays 5:5179−84

doi: 10.21746/ijbio.2016.12.0012
[47]

Vargas LK, Volpiano CG, Lisboa BB, Giongo A, Beneduzi A, et al. 2017. Potential of rhizobia as plant growth-promoting rhizobacteria. In Microbes for Legume Improvement, eds. Zaidi A, Khan MS, Musarra J. Cham: Springer. pp. 153−74. https://doi.org/10.1007/978-3-319-59174-2_7

[48]

Patten CL, Glick BR. 1996. Bacterial biosynthesis of indole-3-acetic acid. Canadian Journal of Microbiology 42:207−20

doi: 10.1139/m96-032
[49]

Kremer RJ. 2006. The role of allelopathic bacteria in weed management. In Allelochemicals: Biological Control of Plant Pathogens and Diseases. Disease Management of Fruits and Vegetables, eds. Inderjit, Mukerji KG. Dordrecht, Netherlands: Springer. pp. 143−55. https://link.springer.com/chapter/10.1007/1-4020-4447-x_7

[50]

Idris A, Labuschagne N, Korsten L. 2009. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. The Journal of Agricultural Science 147(1):17−30

doi: 10.1017/s0021859608008174
[51]

Boyette CD, Hoagland RE. 2015. Bioherbicidal potential of Xanthomonas campestris for controlling Conyza canadensis. Biocontrol Science and Technology 25:229−37

doi: 10.1080/09583157.2014.966650
[52]

Barazani O, Friedman J. 1999. Allelopathic bacteria and their impact on higher plants. Critical Reviews in Plant Science 18:741−755

doi: 10.1080/07352689991309469
[53]

Bandurski RS, Cohen JD, Slovin JP, Reinecke DM. 1995. Auxin biosynthesis and metabolism. In Plant Hormones, eds. Davies PJ. Dordrecht: Kluwer Academic Publishers. pp. 39−65. https://doi.org/10.1007/978-94-011-0473-9_3

[54]

Sarwar M, Frankenberger WT. 1994. Influence of L-tryptophan and auxins applied to the rhizosphere on the vegetative growth of Zea mays L. Plant and Soil 160:97−104

doi: 10.1007/BF00150350
[55]

Patten CL, Glick BR. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Applied Environmental Microbiology 68:3795−801

doi: 10.1128/AEM.68.8.3795-3801.2002
[56]

Kende, H. 1993. Ethylene biosynthesis. Annual Review of Plant Biology 44:283−307

doi: 10.1146/annurev.arplant.44.1.283
[57]

Park JM, Radhakrishnan R, Kang SM, Lee IJ. 2015. IAA producing Enterobacter sp. I-3 as a potent bio-herbicide candidate for weed control: a special reference with lettuce growth inhibition. Indian Journal of Microbiology 55:207−12

doi: 10.1007/s12088-015-0515-y
[58]

Ciotola M, Watson AK, Hallett SG. 1995. Discovery of an isolate of Fusarium oxysporum with potential to control Striga hermonthica in Africa. Weed Research 35:303−9

doi: 10.1111/j.1365-3180.1995.tb01793.x
[59]

Berner D, Carsky R, Dashiell K, Kling J, Manyong V. 1996. A land management-based approach to integrated Striga hermonthica control in sub-Saharan Africa. Outlook on Agriculture 25:157−64

doi: 10.1177/003072709602500304
[60]

Funnell-Harris DL, Pedersen JF, Marx DB. 2008. Effects of sorghum seedlings and previous crop on soil fluorescent Pseudomonas spps. Plant and Soil 311:173−87

doi: 10.1007/s11104-008-9669-2
[61]

Babiker AGT, Ejeta G, Butler LG, Woodson WR. 1993b. Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiologia Plantarum 88:359−65

doi: 10.1111/j.1399-3054.1993.tb05510.x
[62]

Babiker, A. G. T. 2007. Striga: The spreading scourge in Africa. Regulation of Plant Growth and Development 42:74−87

doi: 10.18978/jscrp.42.1_74
[63]

Idris HA, Labuschagne N, Korsten L. 2007. Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biological Control 40:97−106

doi: 10.1016/j.biocontrol.2006.07.017
[64]

Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, et al. 2019. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports 9:12832

doi: 10.1038/s41598-019-49216-8
[65]

Roesch LFW, Camargo FAO, Bento FM, Triplett EW. 2008. Biodiversity of diazotrophic bacteria within the soil, root and stem of field-grown maize. Plant and Soil 302:91−104

doi: 10.1007/s11104-007-9458-3
[66]

Olubukola OB, Elie OO, Abiodun IS. 2002. Characterization of potential ethylene-producing rhizosphere bacteria of Striga-infested maize and sorghum. African Journal of Biotechnology 1:67−69

[67]

Babalola OO, Odhiambo GD. 2008. Effect of inoculation with Klebsiella oxytoca '10 mkr 7' on Striga suicidal germination in Zea mays. World Applied Science Journal 3:57−62