[1] |
Qiu W, Feechan A, Dry I. 2015. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research 2:15020 doi: 10.1038/hortres.2015.20 |
[2] |
Yang B, He S, Liu Y, Liu B, Ju Y, et al. 2020. Transcriptomics integrated with metabolomics reveals the effect of regulated deficit irrigation on anthocyanin biosynthesis in Cabernet Sauvignon grape berries. Food Chemistry 314:126170 doi: 10.1016/j.foodchem.2020.126170 |
[3] |
Huang X, Wang X, Kong F, van der Lee T, Wang Z, et al. 2020. Detection and characterization of carboxylic acid amide-resistant Plasmopara viticola in China using a TaqMan-MGB real-time PCR. Plant Disease 104:2338−45 doi: 10.1094/PDIS-02-20-0291-RE |
[4] |
Liu G, Wang B, Lecourieux D, Li M, Liu M, et al. 2021. Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola. Horticulture Research 8:100 doi: 10.1038/s41438-021-00533-y |
[5] |
Briz-Cid N, Rial-Otero R, Cámara MA, Oliva J, Simal-Gandara J. 2019. Dissipation of three fungicides and their effects on anthocyanins and color of monastrell red wines. International Journal of Molecular Sciences 20:1447 doi: 10.3390/ijms20061447 |
[6] |
Bozdogan AM. 2014. Assessment of total risk on non-target organisms in fungicide application for agricultural sustainability. Sustainability 6:1046−58 doi: 10.3390/su6021046 |
[7] |
Zhang M, Zeiss MR, Geng S. 2015. Agricultural pesticide use and food safety: California's model. Journal of Integrative Agriculture 14:2340−57 doi: 10.1016/S2095-3119(15)61126-1 |
[8] |
Ruiz-García L, Gago P, Martínez-Mora C, Santiago JL, Fernádez-López DJ, et al. 2021. Evaluation and pre-selection of new grapevine genotypes resistant to downy and powdery mildew, obtained by cross-breeding programs in Spain. Frontiers in Plant Science 12:674510 doi: 10.3389/fpls.2021.674510 |
[9] |
Merdinoglu D, Wiedemann-Merdinoglu S, Coste P, Dumas V, Haetty S, et al. 2003. Genetic analysis of downy mildew resistance derived from Muscadinia rotundifolia. Acta Horticulturae451−56 doi: 10.17660/actahortic.2003.603.57 |
[10] |
Fu P, Wu W, Lai G, Li R, Peng Y, et al. 2020. Identifying Plasmopara viticola resistance Loci in grapevine (Vitis amurensis) via genotyping-by-sequencing-based QTL mapping. Plant Physiology and Biochemistry 154:75−84 doi: 10.1016/j.plaphy.2020.05.016 |
[11] |
Blasi P, Blanc S, Wiedemann-Merdinoglu S, Prado E, Rühl EH, et al. 2011. Construction of a reference linkage map of Vitis amurensis and genetic mapping of Rpv8, a locus conferring resistance to grapevine downy mildew. Theoretical and Applied Genetics 123:43−53 doi: 10.1007/s00122-011-1565-0 |
[12] |
Marguerit E, Boury C, Manicki A, Donnart M, Butterlin G, et al. 2009. Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics 118:1261−78 doi: 10.1007/s00122-009-0979-4 |
[13] |
Moreira FM, Madini A, Marino R, Zulini L, Stefanini M, et al. 2011. Genetic linkage maps of two interspecific grape crosses (Vitis spp.) used to localize quantitative trait loci for downy mildew resistance. Tree Genetics & Genomes 7:153−67 doi: 10.1007/s11295-010-0322-x |
[14] |
Qu X, Lu J, Lamikanra O. 1996. Genetic diversity in Muscadine and American bunch grapes based on randomly amplified polymorphic DNA (RAPD) analysis. Journal of the American Society for Horticultural Science 121:1020−23 doi: 10.21273/JASHS.121.6.1020 |
[15] |
Fu P, Tian Q, Lai G, Li R, Song S, et al. 2019. Cgr1, a ripe rot resistance QTL in Vitis amurensis 'Shuang Hong' grapevine. Horticulture Research 6:67 doi: 10.1038/s41438-019-0148-0 |
[16] |
Plant and Fungi Data Integration. 2018. GrapeReSeq_Illumina_20K. https://urgi.versailles.inra.fr/Species/Vitis/GrapeReSeq_Illumina_20K |
[17] |
Guo Z, Wang H, Tao J, Ren Y, Xu C, et al. 2019. Development of multiple SNP marker panels affordable to breeders through genotyping by target sequencing (GBTS) in maize. Molecular Breeding 39:37 doi: 10.1007/s11032-019-0940-4 |
[18] |
Wang J, Zhang Z. 2021. GAPIT Version 3: boosting power and accuracy for genomic association and prediction. Genomics, Proteomics & Bioinformatics 19:629−40 doi: 10.1016/j.gpb.2021.08.005 |
[19] |
Welter LJ, Göktürk-Baydar N, Akkurt M, Maul E, Eibach R, et al. 2007. Genetic mapping and localization of quantitative trait loci affecting fungal disease resistance and leaf morphology in grapevine (Vitis vinifera L). Molecular Breeding 20:359−74 doi: 10.1007/s11032-007-9097-7 |
[20] |
van Heerden CJ, Burger P, Vermeulen A, Prins R. 2014. Detection of downy and powdery mildew resistance QTL in a 'Regent' × 'RedGlobe' population. Euphytica 200:281−95 doi: 10.1007/s10681-014-1167-4 |
[21] |
Zyprian E, Ochßner I, Schwander F, Šimon S, Hausmann L, et al. 2016. Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics 291:1573−94 doi: 10.1007/s00438-016-1200-5 |
[22] |
Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon AF, et al. 2009. Resistance to Plasmopara viticola in grapevine 'Bianca' is controlled by a major dominant gene causing localised necrosis at the infection site. Theoretical and Applied Genetics 120:163−76 doi: 10.1007/s00122-009-1167-2 |
[23] |
Qu J, Dry I, Liu L, Guo Z, Yin L. 2021. Transcriptional profiling reveals multiple defense responses in downy mildew-resistant transgenic grapevine expressing a TIR-NBS-LRR gene located at the MrRUN1/MrRPV1 locus. Horticulture Research 8:161 doi: 10.1038/s41438-021-00597-w |
[24] |
McHale L, Tan X, Koehl P, Michelmore RW. 2006. Plant NBS-LRR proteins: adaptable guards. Genome Biology 7:212 doi: 10.1186/gb-2006-7-4-212 |
[25] |
Merdinoglu D , Wiedeman-Merdinoglu S, Coste P, Dumas V, Haetty S, et al. 2003. Genetic analysis of resistance to downy mildew from Muscadinia rotundifolia. Acta Horticulturae 603:451−56 doi: 10.17660/ActaHortic.2003.603.57 |
[26] |
Feechan A, Anderson C, Torregrosa L, Jermakow A, Mestre P, et al. 2013. Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine species Muscadinia rotundifolia identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. The Plant Journal 76:661−74 doi: 10.1111/tpj.12327 |
[27] |
Foria S, Copetti D, Eisenmann B, Magris G, Vidotto M, et al. 2020. Gene duplication and transposition of mobile elements drive evolution of the Rpv3 resistance locus in grapevine. The Plant Journal 101:529−42 doi: 10.1111/tpj.14551 |
[28] |
Flor HH. 1971. Current status of gene-for-gene concept. Annual Review of Phytopathology 9:275−96 doi: 10.1146/annurev.py.09.090171.001423 |
[29] |
Zhang J, Hewitt TC, Boshoff WHP, Dundas I, Upadhyaya N, et al. 2021. A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nature Communications 12:3378 doi: 10.1038/s41467-021-23738-0 |
[30] |
Wang L, Zhao L, Zhang X, Zhang Q, Jia Y, et al. 2019. Large-scale identification and functional analysis of NLR genes in blast resistance in the Tetep rice genome sequence. Proceedings of the National Academy of Sciences of the United States of America 116:18479−87 doi: 10.1073/pnas.1910229116 |
[31] |
Wang G, Balint-Kurti PJ. 2016. Maize homologs of CCoAOMT and HCT, two key enzymes in lignin biosynthesis, form complexes with the NLR Rp1 protein to modulate the defense response. Plant Physiology 171:2166−77 doi: 10.1104/pp.16.00224 |
[32] |
Goyal N, Bhatia G, Singh K. 2018. Identification of nucleotide binding site leucine rich repeats (NBS-LRR) genes associated with fungal resistance in Vitis vinifera. Proc. Plant and Animal Genome XXVI Conference, San Diego, California, USA, 2018. Scherago International, Inc. |
[33] |
Donald TM, Pellerone F, Adam-Blondon AF, Bouquet A, Thomas MR, et al. 2002. Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics 104:610−18 doi: 10.1007/s00122-001-0768-1 |
[34] |
Fan J, Wang P, Xu X, Liu K, Ruan Y, et al. 2015. Characterization of a TIR-NBS-LRR gene associated with downy mildew resistance in grape. Genetics and Molecular Research 14:7964−75 doi: 10.4238/2015.July.17.4 |
[35] |
Kortekamp A, Welter L, Vogt S, Knoll A, Schwander F, et al. 2008. Identification, isolation and characterization of a CC-NBS-LRR candidate disease resistance gene family in grapevine. Molecular Breeding 22:421−32 doi: 10.1007/s11032-008-9186-2 |
[36] |
Seehalak W, Moonsom S, Metheenukul P, and Tantasawat P. 2011. Isolation of resistance gene analogs from grapevine resistant and susceptible to downy mildew and anthracnose. Scientia Horticulturae 128:357−63 doi: 10.1016/j.scienta.2011.01.003 |
[37] |
Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, et al. 2014. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One 9:e90346 doi: 10.1371/journal.pone.0090346 |
[38] |
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, et al. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376 doi: 10.1371/journal.pone.0003376 |
[39] |
Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, et al. 2011. Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nature Reviews Genetics 12:499−510 doi: 10.1038/nrg3012 |
[40] |
Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, et al. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379 doi: 10.1371/journal.pone.0019379 |
[41] |
Chung YS, Choi SC, Jun TH, and Kim C. 2017. Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Horticulture, Environment, and Biotechnology 58:425−31 doi: 10.1007/s13580-017-0297-8 |
[42] |
Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, et al. 2010. Target-enrichment strategies for next-generation sequencing. Nature Methods 7:111−18 doi: 10.1038/nmeth.1419 |
[43] |
Samorodnitsky E, Datta J, Jewell BM, Hagopian R, Miya J, et al. 2015. Comparison of custom capture for targeted next-generation DNA sequencing. Journal of Molecular Diagnostics 17:64−75 doi: 10.1016/j.jmoldx.2014.09.009 |
[44] |
Liu H, Jian L, Xu J, Zhang Q, Zhang M, et al. 2020. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. The Plant Cell 32:1397−413 doi: 10.1105/tpc.19.00934 |
[45] |
Shaukat M, Sun M, Ali M, Mahmood T, Naseer S, et al. 2021. Genetic gain for grain micronutrients and their association with phenology in historical wheat cultivars released between 1911 and 2016 in Pakistan. Agronomy 11:1247 doi: 10.3390/agronomy11061247 |
[46] |
Li X, Zheng H, Wu W, Liu H, Wang J, et al. 2020. QTL mapping and candidate gene analysis for alkali tolerance in Japonica rice at the bud stage based on linkage mapping and genome-wide association study. Rice 13:48 doi: 10.1186/s12284-020-00412-5 |
[47] |
Du H, Yang J, Chen B, Zhang X, Zhang J, et al. 2019. Target sequencing reveals genetic diversity, population structure, core-SNP markers, and fruit shape-associated loci in pepper varieties. BMC Plant Biology 19:578 doi: 10.1186/s12870-019-2122-2 |
[48] |
Shen Y, Wang J, Shaw R, Yu H, Sheng X, et al. 2021. Development of GBTS and KASP panels for genetic diversity, population structure, and fingerprinting of a large collection of broccoli (Brassica oleracea L.var. italica) in China. Frontiers in Plant Science 12:655254 doi: 10.3389/fpls.2021.655254 |