[1]

Roux F, Touzet P, Cuguen J, Le Corre V. 2006. How to be early flowering: an evolutionary perspective. Trends in Plant Science 11:375−81

doi: 10.1016/j.tplants.2006.06.006
[2]

Hedhly A. 2011. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany 74:9−16

doi: 10.1016/j.envexpbot.2011.03.016
[3]

Song YH, Shim JS, Kinmonth-Schultz HA, Imaizumi T. 2015. Photoperiodic flowering: time measurement mechanisms in leaves. Annual Review of Plant Biology 66:441−64

doi: 10.1146/annurev-arplant-043014-115555
[4]

He Y, Chen T, Zeng X. 2020. Genetic and epigenetic understanding of the seasonal timing of flowering. Plant Communications 1:100008

doi: 10.1016/j.xplc.2019.100008
[5]

Davis SJ. 2009. Integrating hormones into the floral-transition pathway of Arabidopsis thaliana. Plant, Cell & Environment 32:1201−10

doi: 10.1111/j.1365-3040.2009.01968.x
[6]

Balasubramanian S, Sureshkumar S, Lempe J, Weigel D. 2006. Potent induction of Arabidopsis thaliana flowering by elevated growth temperature. PLoS Genetics 2:e106

doi: 10.1371/journal.pgen.0020106
[7]

Blázquez MA, Ahn JH, Weigel D. 2003. A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nature Genetics 33:168−71

doi: 10.1038/ng1085
[8]

Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. 2013. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genetics 9:e1003289

doi: 10.1371/journal.pgen.1003289
[9]

Scortecci K, Michaels SD, Amasino RM. 2003. Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana. Plant Molecular Biology 52:915−22

doi: 10.1023/A:1025426920923
[10]

Lee JH, Ryu HS, Chung KS, Posé D, Kim S, et al. 2013. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342:628−32

doi: 10.1126/science.1241097
[11]

Balasubramanian S, Weigel D. 2006. Temperature induced flowering in Arabidopsis thaliana. Plant Signaling & Behavior 1:227−28

doi: 10.4161/psb.1.5.3452
[12]

Posé D, Verhage L, Ott F, Yant L, Mathieu J, et al. 2013. Temperature-dependent regulation of flowering by antagonistic FLM variants. Nature 503:414−17

doi: 10.1038/nature12633
[13]

Tao Z, Shen L, Liu C, Liu L, Yan Y, et al. 2012. Genome-wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant Journal 70:549−61

doi: 10.1111/j.1365-313X.2012.04919.x
[14]

Knight H, Trewavas AJ, Knight MR. 1996. Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. The Plant Cell 8:489−503

doi: 10.1105/tpc.8.3.489
[15]

Thines BC, Youn Y, Duarte MI, Harmon FG. 2014. The time of day effects of warm temperature on flowering time involve PIF4 and PIF5. Journal of Experimental Botany 65:1141−51

doi: 10.1093/jxb/ert487
[16]

Lim CJ, Park KS, Ali A, Park J, Ryou SM, et al. 2022. Negative regulation of floral transition in Arabidopsis by HOS15-PWR-HDA9 complex. Frontiers in Plant Science 13:1105988

doi: 10.3389/fpls.2022.1105988
[17]

Back K. 2021. Melatonin metabolism, signaling and possible roles in plants. The Plant Journal 105:376−91

doi: 10.1111/tpj.14915
[18]

Kolář J, Johnson CH, Macháčková I. 2003. Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiologia Plantarum 118:605−12

doi: 10.1034/j.1399-3054.2003.00114.x
[19]

Murch SJ, Alan AR, Cao J, Saxena PK. 2009. Melatonin and serotonin in flowers and fruits of Datura metel L. Journal of Pineal Research 47:277−83

doi: 10.1111/j.1600-079X.2009.00711.x
[20]

Park S, Le TNN, Byeon Y, Kim YS, Back K. 2013. Transient induction of melatonin biosynthesis in rice (Oryza sativa L.) during the reproductive stage. Journal of Pineal Research 55:40−45

doi: 10.1111/jpi.12021
[21]

Shi H, Wei Y, Wang Q, Reiter RJ, He C. 2016. Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis. Journal of Pineal Research 60:373−79

doi: 10.1111/jpi.12320
[22]

Zhang H, Wang L, Shi K, Shan D, Zhu Y, et al. 2019. Apple tree flowering is mediated by low level of melatonin under the regulation of seasonal light signal. Journal of Pineal Research 66:e12551

doi: 10.1111/jpi.12551
[23]

Cheong YH, Kim MC. 2010. Functions of MAPK cascade pathways in plant defense signaling. The Plant Pathology Journal 26:101−09

doi: 10.5423/PPJ.2010.26.2.101
[24]

Bush SM, Krysan PJ. 2007. Mutational evidence that the Arabidopsis MAP kinase MPK6 is involved in anther, inflorescence, and embryo development. Journal of Experimental Botany 58:2181−91

doi: 10.1093/jxb/erm092
[25]

Guan Y, Lu J, Xu J, McClure B, Zhang S. 2014. Two mitogen-activated protein kinases, MPK3 and MPK6, are required for funicular guidance of pollen tubes in Arabidopsis. Plant Physiology 165:528−33

doi: 10.1104/pp.113.231274
[26]

Santner A, Estelle M. 2009. Recent advances and emerging trends in plant hormone signalling. Nature 459:1071−78

doi: 10.1038/nature08122
[27]

Wang H, Chen W, Xu Z, Chen M, Yu D. 2023. Functions of WRKYs in plant growth and development. Trends in Plant Science 28:630−45

doi: 10.1016/j.tplants.2022.12.012
[28]

Diao P, Chen C, Zhang Y, Meng Q, Lv W, et al. 2020. The role of NAC transcription factor in plant cold response. Plant Signaling & Behavior 15:1785668

doi: 10.1080/15592324.2020.1785668
[29]

Alves MS, Dadalto SP, Gonçalves AB, De Souza GB, Barros VA, et al. 2013. Plant bZIP transcription factors responsive to pathogens: a review. International Journal of Molecular Sciences 14:7815−28

doi: 10.3390/ijms14047815
[30]

Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Reviews in Biotechnology 40:750−76

doi: 10.1080/07388551.2020.1768509
[31]

Sun T, Rao S, Zhou X, Li L. 2022. Plant carotenoids: recent advances and future perspectives. Molecular Horticulture 2:3

doi: 10.1186/s43897-022-00023-2
[32]

Hermanns AS, Zhou X, Xu Q, Tadmor Y, Li L. 2020. Carotenoid pigment accumulation in horticultural plants. Horticultural Plant Journal 6:343−60

doi: 10.1016/j.hpj.2020.10.002
[33]

Verhage L, Angenent GC, Immink RGH. 2014. Research on floral timing by ambient temperature comes into blossom. Trends in Plant Science 19:583−91

doi: 10.1016/j.tplants.2014.03.009
[34]

Zhang H, Yuan W, Liu S, Dong W, Fu Y. 2015. Sensitivity of flowering phenology to changing temperature in China. Journal of Geophysical Research: Biogeosciences 120:1658−65

doi: 10.1002/2015JG003112
[35]

Wigge PA. 2013. Ambient temperature signalling in plants. Current Opinion in Plant Biology 16:661−66

doi: 10.1016/j.pbi.2013.08.004
[36]

Wang K, Xing Q, Ahammed GJ, Zhou J. 2022. Functions and prospects of melatonin in plant growth, yield, and quality. Journal of Experimental Botany 73:5928−46

doi: 10.1093/jxb/erac233
[37]

He X, Wang C, Wang H, Li L, Wang C. 2020. The function of MAPK cascades in response to various stresses in horticultural plants. Frontiers in Plant Science 11:952

doi: 10.3389/fpls.2020.00952
[38]

Ding H, He J, Wu Y, Wu X, Ge C, et al. 2018. The tomato mitogen-activated protein kinase SlMPK1 is as a negative regulator of the high-temperature stress response. Plant Physiology 177:633−51

doi: 10.1104/pp.18.00067
[39]

Wei C, Liu X, Long D, Guo Q, Fang Y, et al. 2014. Molecular cloning and expression analysis of mulberry MAPK gene family. Plant Physiology and Biochemistry 77:108−16

doi: 10.1016/j.plaphy.2014.02.002
[40]

Song A, Hu Y, Ding L, Zhang X, Li P, et al. 2018. Comprehensive analysis of mitogen-activated protein kinase cascades in chrysanthemum. PeerJ 6:e5037

doi: 10.7717/peerj.5037
[41]

Campos-Rivero G, Osorio-Montalvo P, Sánchez-Borges R, Us-Camas R, Duarte-Aké F, et al. 2017. Plant hormone signaling in flowering: an epigenetic point of view. Journal of Plant Physiology 214:16−27

doi: 10.1016/j.jplph.2017.03.018
[42]

Teotia S, Tang G. 2015. To bloom or not to bloom: role of MicroRNAs in plant flowering. Molecular Plant 8:359−77

doi: 10.1016/j.molp.2014.12.018
[43]

Hu W, Yan Y, Shi H, Liu J, Miao H, et al. 2017. The core regulatory network of the abscisic acid pathway in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. BMC Plant Biology 17:145

doi: 10.1186/s12870-017-1093-4
[44]

Gu C, Guo Z, Hao P, Wang G, Jin Z, et al. 2017. Multiple regulatory roles of AP2/ERF transcription factor in angiosperm. Botanical Studies 58:6

doi: 10.1186/s40529-016-0159-1
[45]

Yin X, Huang L, Zhang X, Wang M, Xu G, et al. 2015. OsCML4 improves drought tolerance through scavenging of reactive oxygen species in rice. Journal of Plant Biology 58:68−73

doi: 10.1007/s12374-014-0349-x
[46]

Zeng W, Mostafa S, Lu Z, Jin B. 2022. Melatonin-mediated abiotic stress tolerance in plants. Frontiers in Plant Science 13:847175

doi: 10.3389/fpls.2022.847175
[47]

Guo R, Hu Y, Aoi Y, Hira H, Ge C, et al. 2022. Local conjugation of auxin by the GH3 amido synthetases is required for normal development of roots and flowers in Arabidopsis. Biochemical and Biophysical Research Communications 589:16−22

doi: 10.1016/j.bbrc.2021.11.109
[48]

Wang P, Lu S, Xie M, Wu M, Ding S, et al. 2020. Identification and expression analysis of the small auxin-up RNA (SAUR) gene family in apple by inducing of auxin. Gene 750:144725

doi: 10.1016/j.gene.2020.144725
[49]

Tanaka Y, Sasaki N, Ohmiya A. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. The Plant Journal 54:733−49

doi: 10.1111/j.1365-313X.2008.03447.x
[50]

Li F, Vallabhaneni R, Wurtzel ET. 2008. PSY3, a new member of the phytoene synthase gene family conserved in the poaceae and regulator of abiotic stress-induced root carotenogenesis. Plant Physiology 146:1333−45

doi: 10.1104/pp.107.111120
[51]

Toledo-Ortiz G, Huq E, Rodríguez-Concepción M. 2010. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors. Proceedings of the National Academy of Sciences of the United States of America 107:11626−31

doi: 10.1073/pnas.0914428107
[52]

Cai Z, Cai Z, Huang J, Wang A, Ntambiyukuri A, et al. 2022. Transcriptomic analysis of tuberous root in two sweet potato varieties reveals the important genes and regulatory pathways in tuberous root development. BMC Genomics 23:473

doi: 10.1186/s12864-022-08670-x
[53]

Gonzalez-Jorge S, Mehrshahi P, Magallanes-Lundback M, Lipka AE, Angelovici R, et al. 2016. ZEAXANTHIN EPOXIDASE activity potentiates carotenoid degradation in maturing seed. Plant Physiology 171:1837−51

doi: 10.1104/pp.16.00604
[54]

Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology 56:165−85

doi: 10.1146/annurev.arplant.56.032604.144046
[55]

Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, et al. 2006. CYP707A1 and CYP707A2, which encode abscisic acid 8′-hydroxylases, are indispensable for proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141:97−07

doi: 10.1104/pp.106.079475
[56]

Jia D, Li Y, Jia K, Huang B, Dang Q, et al. 2024. Abscisic acid activates transcription factor module MdABI5-MdMYBS1 during carotenoid-derived apple fruit coloration. Plant Physiology 195:2053−72

doi: 10.1093/plphys/kiae188