[1]

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436−44

doi: 10.1038/nature14539
[2]

Kamilaris A, Prenafeta-Boldú FX. 2018. Deep learning in agriculture: A survey. Computers and Electronics in Agriculture 147:70−90

doi: 10.1016/j.compag.2018.02.016
[3]

Autor DH, Dorn D. 2013. The growth of low-skill service jobs and the polarization of the US labor market. American Economic Review 103:1553−97

doi: 10.1257/aer.103.5.1553
[4]

Sze V, Chen YH, Yang TJ, Emer JS. 2017. Efficient Processing of deep neural networks: a tutorial and survey. Proceedings of the IEEE 105:2295−329

doi: 10.1109/JPROC.2017.2761740
[5]

Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. 2021. Understanding deep learning (still) requires rethinking generalization. Communications of the ACM 64:107−15

doi: 10.1145/3446776
[6]

Sharma R, Kumar N, Sharma BB. 2022. Applications of Artificial Intelligence in Smart Agriculture: A Review. In Proc. Recent Innovations in Computing, eds. Singh PK, Singh Y, Kolekar MH, Kar AK, Gonçalves PJS. vol 832. Singapore: Springer. pp. 135-42. https://doi.org/10.1007/978-981-16-8248-3_11

[7]

Shafik W, Tufail A, Namoun A, De Silva LC, Rosyzie Anna Awg Haji Mohd Apong. 2023. A systematic literature review on plant disease detection: Motivations, classification techniques, datasets, challenges, and future trends. IEEE Access 11:59174−203

doi: 10.1109/ACCESS.2023.3284760
[8]

Hossain S, Tanzim Reza M, Chakrabarty A, Jung YJ. 2023. Aggregating different scales of attention on feature variants for tomato leaf disease diagnosis from image data: a transformer driven study. Sensors 23:3751

doi: 10.3390/s23073751
[9]

Attri I, Awasthi LK, Sharma TP, Rathee P. 2023. A review of deep learning techniques used in agriculture. Ecological Informatics 77:102217

doi: 10.1016/j.ecoinf.2023.102217
[10]

Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, et al. 2019. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nature Medicine 25:65−69

doi: 10.1038/s41591-018-0268-3
[11]

Sladojevic S, Arsenovic M, Anderla A, Culibrk D, Stefanovic D. 2016. Deep neural networks based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience 2016:3289801

doi: 10.1155/2016/3289801
[12]

Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, et al. 2018. An explainable deep machine vision framework for plant stress phenotyping. Proceedings of the National Academy of Sciences of the United States of America 115:4613−18

doi: 10.1073/pnas.1716999115
[13]

Sharma R. 2021. Artificial Intelligence in Agriculture: A Review. Proc. 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6−8 May 2021. USA: IEEE. pp. 937−42. https://doi.org/10.1109/ICICCS51141.2021.9432187

[14]

Toniutti L, Breitler JC, Etienne H, Campa C, Doulbeau S, et al. 2017. Influence of environmental conditions and genetic background of Arabica coffee (C. arabica L.) on leaf rust (Hemileia vastatrix) Pathogenesis. Frontiers in Plant Science 8:2025

doi: 10.3389/fpls.2017.02025
[15]

Andersen KF, Madden LV, Paul PA. 2015. Fusarium head blight development and deoxynivalenol accumulation in wheat as influenced by post-anthesis moisture patterns. Phytopathology 105:210−19

doi: 10.1094/PHYTO-04-14-0104-R
[16]

Singh BK, Delgado-Baquerizo M, Egidi E, Guirado E, Leach JE, et al. 2023. Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology 21:640−56

doi: 10.1038/s41579-023-00900-7
[17]

Liu L, Ouyang W, Wang X, Fieguth P, Chen J, et al. 2020. Deep Learning for Generic Object Detection: A Survey. International Journal of Computer Vision 128:261−318

doi: 10.1007/s11263-019-01247-4
[18]

Karim S, Zhang Y, Yin S, Bibi I, Brohi AA. 2020. A brief review and challenges of object detection in optical remote sensing imagery. Multiagent and Grid Systems 16:227−43

doi: 10.3233/MGS-200330
[19]

Arulprakash E, Aruldoss M. 2022. A study on generic object detection with emphasis on future research directions. Journal of King Saud University - Computer and Information Sciences 34:7347−65

doi: 10.1016/j.jksuci.2021.08.001
[20]

Huang J, Rathod V, Sun C, Zhu M, Korattikara A, et al. 2017. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21−26 July 2017. USA: IEEE. pp. 3296−97. https://doi.org/10.1109/CVPR.2017.351

[21]

Tan M, Le QV. 2019. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA, 2019. Vol. 97. Proceedings of Machine Learning Research (PMLR). pp. 6105−14. http://proceedings.mlr.press/v97/tan19a.html

[22]

He T, Yu S, Wang Z, Li J, Chen Z. 2019. From data quality to model quality: an exploratory study on deep learning. Proceedings of the 11th Asia-Pacific Symposium on Internetware, Fukuoka Japan, October 28−29, 2019. New York, United States: Association for Computing Machinery. https://doi.org/10.1145/3361242.3361260

[23]

Bailly A, Blanc C, Francis É, Guillotin T, Jamal F, et al. 2022. Effects of dataset size and interactions on the prediction performance of logistic regression and deep learning models. Computer Methods and Programs in Biomedicine 213:106504

doi: 10.1016/j.cmpb.2021.106504
[24]

Recht B, Roelofs R, Schmidt L, Shankar V. 2019. Do ImageNet Classifiers Generalize to ImageNet? In Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, USA, 2019. Vol. 97. Proceedings of Machine Learning Research (PMLR). pp. 5389−400. http://proceedings.mlr.press/v97/recht19a.html

[25]

Priestley M, O’donnell F, Simperl E. 2023. A survey of data quality requirements that matter in ML development pipelines. Journal of Data and Information Quality 15:11

doi: 10.1145/3592616
[26]

Garcia Arnal Barbedo J, Vieira Koenigkan L, Almeida Halfeld-Vieira B, Veras Costa R, Lima Nechet K, et al. 2018. Annotated Plant Pathology Databases for Image-Based Detection and Recognition of Diseases. IEEE Latin America Transactions 16:1749−57

doi: 10.1109/TLA.2018.8444395
[27]

Kaustubh B. 2019. Tomato leaf disease detection. www.kaggle.com/datasets/kaustubhb999/tomatoleaf

[28]

Chen L, Yuan Y. 2019. Agricultural Disease Image Dataset for Disease Identification Based on Machine Learning. Proc. Big Scientific Data Management. BigSDM 2018. Lecture Notes in Computer Science, eds. Li J, Meng X, Zhang Y, Cui W, Du Z. Cham: Springer. pp. 263−74. https://doi.org/10.1007/978-3-030-28061-1_26

[29]

Francisco AKG. 2019. Rice-Disease-DataSet. https://github.com/aldrin233/RiceDiseases-DataSet

[30]

WoAiFeiJiang. 2023. Pathological images of apple leaves. https://aistudio.baidu.com/datasetdetail/11591/0

[31]

Thapa R, Zhang K, Snavely N, Belongie S, Khan A. 2021. Plant Pathology 2021 - FGVC8. https://kaggle.com/competitions/plant-pathology-2021-fgvc8

[32]

Arun Pandian J, Geetharamani G, Huang ML, Chang YH. 2022. Tomato Disease Multiple Sources. www.kaggle.com/datasets/cookiefinder/tomato-disease-multiple-sources/

[33]

Arun Pandian J, Geetharamani G. 2019. Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network. https://data.mendeley.com/datasets/tywbtsjrjv/1

[34]

Zhu R, Zou H, Li Z, Ni R. 2023. Apple-Net: a model based on improved YOLOv5 to detect the apple leaf diseases. Plants 12:169

doi: 10.3390/plants12010169
[35]

Wang Y, Wang Y, Zhao J. 2022. MGA-YOLO: A lightweight one-stage network for apple leaf disease detection. Frontiers in Plant Science 13:927424

doi: 10.3389/fpls.2022.927424
[36]

Li H, Shi L, Fang S, Yin F. 2023. Real-time detection of apple leaf diseases in natural scenes based on YOLOv5. Agriculture 13:878

doi: 10.3390/agriculture13040878
[37]

Xu W, Wang R. 2023. ALAD-YOLO: an lightweight and accurate detector for apple leaf diseases. Frontiers in Plant Science 14:4569

doi: 10.3389/fpls.2023.1204569
[38]

Liu S, Qiao Y, Li J, Zhang H, Zhang M, et al. 2022. An Improved Lightweight Network for Real-Time Detection of Apple Leaf Diseases in Natural Scenes. Agronomy 12:2636

doi: 10.3390/agronomy12102363
[39]

Tian L, Zhang H, Liu B, Zhang J, Duan N, et al. 2023. VMF-SSD: A novel V-space based multi-scale feature fusion SSD for apple leaf disease detection. IEEE-ACM Transactions on Computational Biology and Bioinformatics 20:2016−28

doi: 10.1109/TCBB.2022.3229114
[40]

Zhu X, Li J, Jia R, Liu B, Yao Z, et al. 2023. LAD-Net: A Novel Light Weight Model for Early Apple Leaf Pests and Diseases Classification. Ieee-Acm Transactions on Computational Biology and Bioinformatics 20:1156−69

doi: 10.1109/TCBB.2022.3191854
[41]

Shafik W, Tufail A, Liyanage CDS, Apong RAAHM. 2023. Using a novel convolutional neural network for plant pests detection and disease classification. Journal of the Science of Food and Agriculture 103:5849−61

doi: 10.1002/jsfa.12700
[42]

Gao A, Ren H, Song Y, Ren L, Zhang Y, et al. 2023. Construction and verification of machine vision algorithm model based on apple leaf disease images. Frontiers in Plant Science 14:1246065

doi: 10.3389/fpls.2023.1246065
[43]

Khan AI, Quadri SMK, Banday S, Shah JL. 2022. Deep diagnosis: A real-time apple leaf disease detection system based on deep learning. Computers and Electronics in Agriculture 198:107093

doi: 10.1016/j.compag.2022.107093
[44]

Gong X, Zhang S. 2023. A high-precision detection method of apple leaf diseases using improved faster R-CNN. Agriculture 13:240

doi: 10.3390/agriculture13020240
[45]

Jing J, Li S, Qiao C, Li K, Zhu X, et al. 2023. A tomato disease identification method based on leaf image automatic labeling algorithm and improved YOLOv5 model. Journal of the Science of Food and Agriculture 103:7070−82

doi: 10.1002/jsfa.12793
[46]

Tang Z, He X, Zhou G, Chen A, Wang Y, et al. 2023. A Precise Image-Based Tomato Leaf Disease Detection Approach Using PLPNet. Plant Phenomics 5:0042

doi: 10.34133/plantphenomics.0042
[47]

Badiger M, Mathew JA. 2023. Tomato plant leaf disease segmentation and multiclass disease detection using hybrid optimization enabled deep learning. Journal of Biotechnology 374:101−13

doi: 10.1016/j.jbiotec.2023.07.011
[48]

Zhong Y, Teng Z, Tong M. 2023. LightMixer: A novel lightweight convolutional neural network for tomato disease detection. Frontiers in Plant Science 14:1166296

doi: 10.3389/fpls.2023.1166296
[49]

Liu Y, Song Y, Ye R, Zhu S, Huang Y, et al. 2023. High-Precision Tomato Disease Detection Using NanoSegmenter Based on Transformer and Lightweighting. Plants 12:2559

doi: 10.3390/plants12132559
[50]

Elfatimi E, Eryiğit R, Elfatimi L. 2024. Deep multi-scale convolutional neural networks for automated classification of multi-class leaf diseases in tomatoes. Neural Computing and Applications 36:803−22

doi: 10.1007/s00521-023-09062-2
[51]

Mondal D, Roy K, Pal D, Kole DK. 2022. Deep learning-based approach to detect and classify signs of crop leaf diseases and pest damage. SN Computer Science 3:433

doi: 10.1007/s42979-022-01332-5
[52]

Saeed A, Abdel-Aziz AA, Mossad A, Abdelhamid MA, Alkhaled AY, Mayhoub M. 2023. Smart Detection of Tomato Leaf Diseases Using Transfer Learning-Based Convolutional Neural Networks. Agriculture-Basel 13:14

[53]

Roy K, Chaudhuri SS, Frnda J, Bandopadhyay S, Ray IJ, et al. 2023. Detection of Tomato Leaf Diseases for Agro-Based Industries Using Novel PCA DeepNet. Ieee Access 11:14983−5001

doi: 10.1109/ACCESS.2023.3244499
[54]

Zhang D, Huang Y, Wu C, Ma M. 2023. Detecting tomato disease types and degrees using multi-branch and destruction learning. Computers and Electronics in Agriculture 213:108244

doi: 10.1016/j.compag.2023.108244
[55]

Pan J, Wang T, Wu Q. 2023. RiceNet: A two stage machine learning method for rice disease identification. Biosystems Engineering 225:25−40

doi: 10.1016/j.biosystemseng.2022.11.007
[56]

Daniya T, Vigneshwari S. 2023. Rider Water Wave-enabled deep learning for disease detection in rice plant. Advances in Engineering Software 182:103472

doi: 10.1016/j.advengsoft.2023.103472
[57]

Chen L, Zou J, Yuan Y, He H. 2023. Improved domain adaptive rice disease image recognition based on a novel attention mechanism. Computers and Electronics in Agriculture 208:107806

doi: 10.1016/j.compag.2023.107806
[58]

Peng J, Wang Y, Jiang P, Zhang RF, Chen HL. 2023. RiceDRA-Net: Precise Identification of Rice Leaf Diseases with Complex Backgrounds Using a Res-Attention Mechanism. Applied Sciences-Basel 13:4928

doi: 10.3390/app13084928
[59]

Yang L, Yu X, Zhang S, Long H, Zhang H, et al. 2023. GoogLeNet based on residual network and attention mechanism identification of rice leaf diseases. Computers and Electronics in Agriculture 204:107543

doi: 10.1016/j.compag.2022.107543
[60]

Wang Y, Wang H, Peng Z. 2021. Rice diseases detection and classification using attention based neural network and bayesian optimization. Expert Systems with Applications 178:114770

doi: 10.1016/j.eswa.2021.114770
[61]

Yang Y, Jiao G, Liu J, Zhao W, Zheng J. 2023. A lightweight rice disease identification network based on attention mechanism and dynamic convolution. Ecological Informatics 78:102320

doi: 10.1016/j.ecoinf.2023.102320
[62]

Patil RR, Kumar S, Chiwhane S, Rani R, Pippal SK. 2023. An Artificial-Intelligence-Based Novel Rice Grade Model for Severity Estimation of Rice Diseases. Agriculture 13:47

doi: 10.3390/agriculture13010047
[63]

Stephen A, Punitha A, Chandrasekar A. 2023. Designing self attention-based ResNet architecture for rice leaf disease classification. Neural Computing & Applications 35:6737−51

doi: 10.1007/s00521-022-07793-2
[64]

Simhadri CG, Kondaveeti HK. 2023. Automatic Recognition of Rice Leaf Diseases Using Transfer Learning. Agronomy 13:961

doi: 10.3390/agronomy13040961
[65]

Thite S, Suryawanshi Y, Patil K, Chumchu P. 2023. Coconut (Cocos nucifera) tree disease dataset: A dataset for disease detection and classification for machine learning applications. Data in Brief 51:109690

doi: 10.1016/j.dib.2023.109690
[66]

Maray M, Albraikan AA, Alotaibi SS, Alabdan R, Al Duhayyim M, et al. 2022. Artificial intelligence-enabled coconut tree disease detection and classification model for smart agriculture. Computers and Electrical Engineering 104:108399

doi: 10.1016/j.compeleceng.2022.108399
[67]

Mazzia V, Salvetti F, Chiaberge M. 2021. Efficient-CapsNet: capsule network with self-attention routing. Scientific Reports 11:14634

doi: 10.1038/s41598-021-93977-0
[68]

Subbaian S, Balasubramanian A, Marimuthu M, Chandrasekaran S, Muthusaravanan G. 2024. Detection of coconut leaf diseases using enhanced deep learning techniques. Journal of Intelligent & Fuzzy Systems 46:5033−45

doi: 10.3233/JIFS-233831
[69]

Gallenero JA, Villaverde J. 2023. Identification of Durian Leaf Disease Using Convolutional Neural Network. Proc. 2023 15th International Conference on Computer and Automation Engineering (ICCAE), Sydney, Australia, 3-05 March, 2023. pp. 172−77. https://doi.org/10.1109/ICCAE56788.2023.10111159

[70]

Sanath Rao U, Swathi R, Sanjana V, Arpitha L, Chandrasekhar K, et al. 2021. Deep Learning Precision Farming: Grapes and Mango Leaf Disease Detection by Transfer Learning. Global Transitions Proceedings 2:535−44

doi: 10.1016/j.gltp.2021.08.002
[71]

Piriyasupakij J, Prasitphan R. 2023. Development of autonomous drones to detect diseases on plant leaves of durian trees. Proc. 2023 27th International Computer Science and Engineering Conference (ICSEC), Samui Island, Thailand, 14−15 September 2023. USA: IEEE. pp. 258−65. https://doi.org/10.1109/ICSEC59635.2023.10329671

[72]

Li C, Adhikari R, Yao Y, Miller AG, Kalbaugh K, et al. 2020. Measuring plant growth characteristics using smartphone based image analysis technique in controlled environment agriculture. Computers and Electronics in Agriculture 168:8

doi: 10.1016/j.compag.2019.105123
[73]

Du L, Yang H, Song X, Wei N, Yu C, et al. 2022. Estimating leaf area index of maize using UAV-based digital imagery and machine learning methods. Scientific Reports 12:15937

doi: 10.1038/s41598-022-20299-0
[74]

Martinez-Guanter J, Ribeiro Á, Peteinatos GG, Pérez-Ruiz M, Gerhards R, et al. 2019. Low-Cost Three-Dimensional Modeling of Crop Plants. Sensors 19:2883

doi: 10.3390/s19132883
[75]

Maken P, Gupta A. 2023. 2D-to-3D: A Review for Computational 3D Image Reconstruction from X-ray Images. Archives of Computational Methods in Engineering 30:85−114

doi: 10.1007/s11831-022-09790-z
[76]

Marchand É, Bouthemy P, Chaumette F. 2001. A 2D–3D model-based approach to real-time visual tracking. Image and Vision Computing 19:941−55

doi: 10.1016/S0262-8856(01)00054-3
[77]

Konrad J, Wang M, Ishwar P. 2012. 2D-to-3D image conversion by learning depth from examples. Proc. 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16−21 June 2012. USA: IEEE. pp. 16−22. https://doi.org/10.1109/CVPRW.2012.6238903

[78]

Gao Y, Wang M, Tao D, Ji R, Dai Q. 2012. 3-D Object Retrieval and Recognition With Hypergraph Analysis. IEEE Transactions on Image Processing 21:4290−303

doi: 10.1109/TIP.2012.2199502
[79]

Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature Pyramid Networks for Object Detection. Proc. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21−26 July 2017. USA: IEEE. pp. 936−44. https://doi.org/10.1109/CVPR.2017.106

[80]

Li Y, Sun S, Zhang C, Yang G, Ye Q. 2022. One-Stage Disease Detection Method for Maize Leaf Based on Multi-Scale Feature Fusion. Applied Sciences 12:7960

doi: 10.3390/app12167960
[81]

Chen J, Deng X, Wen Y, Chen W, Zeb A, et al. 2023. Weakly-supervised learning method for the recognition of potato leaf diseases. Artificial Intelligence Review 56:7985−8002

doi: 10.1007/s10462-022-10374-3
[82]

Woo S, Park J, Lee JY, Kweon IS. 2018. CBAM: Convolutional Block Attention Module. In Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science, eds. Ferrari V, Hebert M, Sminchisescu C, Weiss Y. Cham: Springer International Publishing. pp. 3−19. https://doi.org/10.1007/978-3-030-01234-2_1

[83]

Park J, Woo S, Lee JY, Kweon IS. 2020. A simple and light-weight attention module for convolutional neural networks. International Journal of Computer Vision 128:783−98

doi: 10.1007/s11263-019-01283-0
[84]

Law H, Deng J. 2020. CornerNet: detecting objects as paired keypoints. International Journal of Computer Vision 128:642−56

doi: 10.1007/s11263-019-01204-1
[85]

Justus D, Brennan J, Bonner S, McGough AS. 2018. Predicting the Computational Cost of Deep Learning Models. Proc. 2018 IEEE International Conference on Big Data (Big Data), Seattle, WA, USA, 10−13 December 2018. pp. 3873−82. https://doi.org/10.1109/BigData.2018.8622396

[86]

Sharma V, Tripathi AK, Mittal H. 2023. DLMC-Net: Deeper lightweight multi-class classification model for plant leaf disease detection. Ecological Informatics 75:2025

doi: 10.1016/j.ecoinf.2023.102025
[87]

Li B, Jiang W, Gu J, Liu K. 2020. A Summary of convolution Neural Network Compression and Acceleration Technology. Proc. 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Sanya, China, 4−6 December 2020. USA: IEEE. pp. 269−75. https://doi.org/10.1109/ICHCI51889.2020.00065

[88]

He Y, Zhang X, Sun J. 2017. Channel pruning for accelerating very deep neural networks. Proc. 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22−29 October 2017. USA: IEEE. pp. 1398−406. https://doi.org/10.1109/ICCV.2017.155

[89]

Hinton G, Vinyals O, Dean J. 2015. Distilling the knowledge in a neural network. ArXiv In Press

doi: 10.48550/arXiv.1503.02531
[90]

Keller B, Venkatesan R, Dai S, Tell SG, Zimmer B, et al. 2022. A 17–95.6 TOPS/W deep learning inference accelerator with per-vector scaled 4-bit quantization for transformers in 5nm. Proc. 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 12-17 June 2022. USA: IEEE. pp. 16−17. https://doi.org/10.1109/VLSITechnologyandCir46769.2022.9830277

[91]

Wilson RC, Shenhav A, Straccia M, Cohen JD. 2019. The Eighty Five Percent Rule for optimal learning. Nature Communications 10:4646

doi: 10.1038/s41467-019-12552-4
[92]

Hashim N, Ali MM, mahadi MR, Abdullah AF, Wayayok A, et al. 2023. Smart farming for sustainable rice production: an insight into applications, challenges and future prospects. Rice Science 31:47−61

doi: 10.1016/j.rsci.2023.08.004
[93]

Mahlein AK. 2015. Plant disease detection by imaging sensors – parallels and specific demands for precision agriculture and plant phenotyping. Plant Disease 100:241−51

doi: 10.1094/PDIS-03-15-0340-FE
[94]

Zahid A, Abbas HT, Imran MA, Qaraqe KA, Alomainy A, et al. 2019. Characterization and Water Content Estimation Method of Living Plant Leaves Using Terahertz Waves. Applied Sciences 9:2781

doi: 10.3390/app9142781
[95]

Zahid A, Abbas HT, Ren A, Zoha A, Heidari H, et al. 2019. Machine learning driven non-invasive approach of water content estimation in living plant leaves using terahertz waves. Plant Methods 15:138

doi: 10.1186/s13007-019-0522-9
[96]

Zahid A, Dashtipour K, Abbas HT, Mabrouk IB, Al-Hasan M, et al. 2022. Machine learning enabled identification and real-time prediction of living plants’ stress using terahertz waves. Defence Technology 18:1330−39

doi: 10.1016/j.dt.2022.01.003
[97]

Zhao WX, Zhou K, Li J, Tang T, Wang X, et al. 2023. A survey of large language model. ArXiv In Press

doi: 10.48550/arXiv.2303.18223