[1] |
Hitchcock AS, Chase A. 1951. Manual of the grasses of the United States. Washington, DC: United States Department of Agriculture. https://doi.org/10.5962/bhl.title.65332 |
[2] |
Engelke MC, Hickey VG. 1983. Buffalograss germplasm diversity and development for semi-arid turf. Texas Turfgrass Proc. PR 4150. pp. 21-22. |
[3] |
Kneebone WR. 1984. The potential for native grasses as turf. Proceedings of the1984 Arizona Turf, Landscape, and Irrigation Conference, Phoenix, Arizona, 1984, pp. 29−30. Tuscon, AZ: University of Arizona. https://tic.msu.edu/tgif/flink?recno=89696 |
[4] |
Webb JJ Jr. 1941. The life history of buffalo grass. Transactions of the Kansas Academy of Science 44:58−75 doi: 10.2307/3624868 |
[5] |
Sun Y. 2017. Turfgrass Management. Beijing: China Forestry Publishing House. 179 pp. |
[6] |
Huff DR, Wu L. 1987. Sex expression in buffalograss under different environments. Crop Science 27:623−26 doi: 10.2135/cropsci1987.0011183x002700040002x |
[7] |
Budak H, Shearman RC, Parmaksiz I, Dweikat I. 2004. Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics 109:280−88 doi: 10.1007/s00122-004-1630-z |
[8] |
Budak H, Shearman RC, Gulsen O, Dweikat I. 2005. Understanding ploidy complex and geographic origin of the Buchloe dactyloides genome using cytoplasmic and nuclear marker systems. Theoretical and Applied Genetics 111:1545−52 doi: 10.1007/s00122-005-0083-3 |
[9] |
Han X, Wang L, Shu Q, Liu Z, Xu S, et al. 2008. Molecular characterization of tree peony germplasm using sequence-related amplified polymorphism markers. Biochemical Genetics 46:162−79 doi: 10.1007/s10528-007-9140-8 |
[10] |
Yin T, Quinn JA. 1995. Tests of a mechanistic model of one hormone regulating both sexes in Buchloe dactyloides (Poaceae). American Journal of Botany 82:745−51 doi: 10.2307/2445614 |
[11] |
Quinn JA. 1987. Relationship between synaptospermy and dioecy in the life history strategies of Buchloe dactyloides (Gramineae). American Journal of Botany 74:1167−72 doi: 10.2307/2444153 |
[12] |
Henry IM, Akagi T, Tao R, Comai L. 2018. One hundred ways to invent the sexes: theoretical and observed paths to dioecy in plants. Annual Review of Plant Biology 69:553−75 doi: 10.1146/annurev-arplant-042817-040615 |
[13] |
Donze T, Amaradasa BS, Caha C, Heng-Moss T, Amundsen K. 2015. Molecular differentiation of gender in buffalograss. Crop Science 55:1827−33 doi: 10.2135/cropsci2014.07.0478 |
[14] |
Yamaguchi N, Wu MF, Winter CM, Berns MC, Nole-Wilson S, et al. 2013. A molecular framework for auxin-mediated initiation of flower primordia. Developmental Cell 24:271−82 doi: 10.1016/j.devcel.2012.12.017 |
[15] |
Yu S, Galvão VC, Zhang YC, Horrer D, Zhang TQ, et al. 2012. Gibberellin regulates the Arabidopsis floral transition through mir156-targeted SQUAMOSA PROMOTER BINDING–LIKE transcription factors. The Plant Cell 24:3320−32 doi: 10.1105/tpc.112.101014 |
[16] |
Wahl V, Ponnu J, Schlereth A, Arrivault S, Langenecker T, et al. 2013. Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704−7 doi: 10.1126/science.1230406 |
[17] |
Suetsugu N, Wada M. 2003. Cryptogam blue-light photoreceptors. Current Opinion in Plant Biology 6:91−96 doi: 10.1016/s1369526602000067 |
[18] |
Shao H, Jiang E. 1992. Sexual expression and its regulation in higher plants—The influence of external factors on sexual expression of plants. Journal of China West Normal University (Natural Sciences) 13:275−79 |
[19] |
Parvathy ST, Prabakaran AJ, Jayakrishna T. 2021. Probing the floral developmental stages, bisexuality and sex reversions in castor (Ricinus communis L.). Scientific Reports 11:4246 doi: 10.1038/s41598-021-81781-9 |
[20] |
Folke SH, Delph LF. 1997. Environmental and physiological effects on pistillate flower production in Silene noctiflora L. (Caryophyllaceae). International Journal of Plant Sciences 158:501−9 doi: 10.1086/297460 |
[21] |
Buide ML, del Valle JC, Castilla AR, Narbona E. 2018. Sex expression variation in response to shade in gynodioecious-gynomonoecious species: Silene littorea decreases flower production and increases female flower proportion. Environmental and Experimental Botany 146:54−61 doi: 10.1016/j.envexpbot.2017.10.016 |
[22] |
Bertin RI. 2007. Sex allocation in Carex (Cyperaceae): effects of light, water, and nutrients. Canadian Journal of Botany 85:377−84 doi: 10.1139/b07-034 |
[23] |
Geber MA, Dawson TE, Delph LF. 1999. Gender and sexual dimorphism in flowering plants. Heidelberg: Springer Berlin. xx, 305 pp. https://doi.org/10.1007/978-3-662-03908-3 |
[24] |
Bisang I, Ehrlén J, Hedenäs L. 2020. Sex expression and genotypic sex ratio vary with region and environment in the wetland moss Drepanocladus lycopodioides. Botanical Journal of the Linnean Society 192:421−34 doi: 10.1093/botlinnean/boz063 |
[25] |
Castetter RC, McLetchie DN, Eppley SM, Stark LR. 2019. Sex ratio and sex expression in an urban population of the silver moss, Bryum argenteum Hedw. Journal of Bryology 41:227−35 doi: 10.1080/03736687.2019.1610617 |
[26] |
Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39 doi: 10.1038/nrg3291 |
[27] |
Simancas B, Cotado A, Müller M, Munné-Bosch S. 2018. Phosphate starvation during the transition phase increases the sex ratio and 12-oxo-phytodienoic acid contents in females of Urtica dioica. Environmental and Experimental Botany 145:39−46 doi: 10.1016/j.envexpbot.2017.10.013 |
[28] |
Li H, Wang L, Mai Y, Han W, Suo Y, et al. 2021. Phytohormone and integrated mRNA and miRNA transcriptome analyses and differentiation of male between hermaphroditic floral buds of andromonoecious Diospyros kaki Thunb. BMC Genomics 22:203 doi: 10.1186/s12864-021-07514-4 |
[29] |
Golenberg EM, West NW. 2013. Hormonal interactions and gene regulation can link monoecy and environmental plasticity to the evolution of dioecy in plants. American Journal of Botany 100:1022−37 doi: 10.3732/ajb.1200544 |
[30] |
Laibach F, Kribben FJ. 1950. Der Einfluß von Wuchsstoff auf die Blütenbildung der Gurke. Naturwissenschaften 37:114−15 doi: 10.1007/BF00623721 |
[31] |
Rudich J, Halevy AH, Kedar N. 1969. Increase in femaleness of three cucurbits by treatment with Ethrel, an ethylene releasing compound. Planta 86:69−76 doi: 10.1007/BF00385305 |
[32] |
Mahida SV, Valia RZ, Sitapara HH. 2015. Growth, yield and sex-expression as influenced by plant growth regulators in sponge gourd cv. PUSA CHIKNI. The Asian Journal of Horticulture 10:122−25 doi: 10.15740/has/tajh/10.1/122-125 |
[33] |
Chandra A, Huff DR. 2014. Pistil smut infection increases ovary production, seed yield components, and pseudosexual reproductive allocation in buffalograss. Plants 3:594−612 doi: 10.3390/plants3040594 |
[34] |
Cheng M, Wang X, Zhang Y, Xue J, Niu J. 2010. Effects of external hormones on traits of vegetative growth and sexual reproduction in buffalograss. Journal of Inner Mongolia Minzu University (Natural Sciences) 25:171−74 doi: 10.3969/j.issn.1671-0185.2010.02.019 |
[35] |
Birkemeyer C, Kolasa A, Kopka J. 2003. Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. Journal of Chromatography A 993:89−102 doi: 10.1016/s0021-9673(03)00356-x |
[36] |
Dalai S, Singh MK, Kumar M, Singh KV, Kumar V. 2016. Growth, flowering and yield of cucumber (Cucumis sativus L.) as influenced by different levels of NAA and GA3. Journal of Plant Development Sciences 8:445−50 |
[37] |
Khatoon R, Moniruzzaman M, Moniruzzaman M. 2019. Effect of foliar spray of GA3 and NAA on sex expression and yield of bitter gourd. Bangladesh Journal of Agricultural Research 44:281−90 doi: 10.3329/bjar.v44i2.41818 |
[38] |
Yuan R, Li J. 2008. Effect of sprayable 1-MCP, AVG, and NAA on ethylene biosynthesis, preharvest fruit drop, fruit maturity, and quality of 'delicious' apples. HortScience 43:1454−60 doi: 10.21273/hortsci.43.5.1454 |
[39] |
Abd El-Gleel Mosa WF, Abd EL-Megeed NA, AMAly M, Sas Paszt L. 2015. The influence of NAA, GA3 and calcium nitrate on growth, yield and fruit quality of "le conte" pear trees. Journal of Experimental Agriculture International 9:1−9 doi: 10.9734/ajea/2015/18737 |
[40] |
Baque MA, Hahn EJ, Paek KY. 2010. Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin. Plant Biotechnology Reports 4:109−16 doi: 10.1007/s11816-009-0121-8 |
[41] |
Subhashini Devi P, Satyanarayana B, Arundhati A, Raghava Rao T. 2013. Activity of antioxidant enzymes and secondary metabolites during in vitro regeneration of Sterculia urens. Biologia Plantarum 57:778−82 doi: 10.1007/s10535-013-0337-x |
[42] |
Stojakowska A, Malarz J, Kisiel W. 2011. Terpenoids from a multiple shoot culture of Telekia speciosa. Acta Societatis Botanicorum Poloniae 80:253−56 doi: 10.5586/asbp.2011.019 |
[43] |
Grobbelaar MC, Makunga NP, Stander MA, Kossmann J, Hills PN. 2014. Effect of strigolactones and auxins on growth and metabolite content of Sutherlandia frutescens (L.) R. Br. microplants in vitro. Plant Cell, Tissue and Organ Culture (PCTOC) 117:401−9 doi: 10.1007/s11240-014-0449-9 |
[44] |
Fazal H, Abbasi BH, Ahmad N. 2014. Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L. Applied Biochemistry and Biotechnology 174:2086−95 doi: 10.1007/s12010-014-1190-x |
[45] |
Guo X, Wang L, Chang X, Li Q, Abbasi AM. 2019. Influence of plant growth regulators on key-coding genes expression associated with phytochemicals biosynthesis and antioxidant activity in soybean (Glycine max (L.) Merr) sprouts. International Journal of Food Science & Technology 54:771−79 doi: 10.1111/ijfs.13992 |
[46] |
Wasternack C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany 100:681−97 doi: 10.1093/aob/mcm079 |
[47] |
Yamasaki S, Fujii N, Takahashi H. 2005. Hormonal regulation of sex expression in plants. Vitamins & Hormones 72:79−110 doi: 10.1016/S0083-6729(05)72003-3 |
[48] |
Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, et al. 2009. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science 323:262−65 doi: 10.1126/science.1164645 |
[49] |
Browse J. 2009. Jasmonate: preventing the maize tassel from getting in touch with his feminine side. Science Signaling 2:pe9 doi: 10.1126/scisignal.259pe9 |
[50] |
Yang S, An L, Yan Y. 2017. The gene expression analysis of tasselseed2 in maize organs/tissues. Journal of Nanjing Agricultural University 40:936−40 |
[51] |
Chandra A, Huff DR. 2010. A fungal parasite regulates a putative female-suppressor gene homologous to maize tasselseed2 and causes induced hermaphroditism in male buffalograss. Molecular Plant-Microbe Interactions 23:239−50 doi: 10.1094/MPMI-23-3-0239 |
[52] |
Farmer EE, Caldelari D, Pearce G, Walker-Simmons MK, Ryan CA. 1994. Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiology 106:337−42 doi: 10.1104/pp.106.1.337 |