[1]

Egilla JN, Davies FT Jr, Boutton TW. 2005. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of Hibiscus rosa-sinensis at three potassium concentrations. Photosynthetica 43:135−40

doi: 10.1007/s11099-005-5140-2
[2]

Ahmad Anjum S, Xie X, Wang L, Saleem MF, Man C, et al. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research 6:2026−32

doi: 10.21921/jas.5.3.7
[3]

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33:453−67

doi: 10.1111/j.1365-3040.2009.02041.x
[4]

Kozlowski TT, Pallardy SG. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review 68:270−334

doi: 10.1663/0006-8101(2002)068[0270:AAAROW]2.0.CO;2
[5]

Yasar F, Ellialtioglu S, Yildiz K. 2008. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian Journal of Plant Physiology 55:782−86

doi: 10.1134/S1021443708060071
[6]

Hetherington AM, Woodward, FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424:901−08

doi: 10.1038/nature01843
[7]

Kafkas E, Atasay A, Sabir FK, Akgül H, Uçgun K. 2009. Effects of different irrigation intervals and fertilizer applications on certain chemical contents of 'Braeburn' apple cultivar. African Journal of Biotechnology 8:2138−42

[8]

Basu S, Roychoudhury A, Saha PP, Sengupta DN. 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regulation 60:51−59

doi: 10.1007/s10725-009-9418-4
[9]

Liu Z, Zhang X, Bai J, Suo B, Xu P, et al. 2009. Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought-stressed cucumber leaves. Scientia Horticulturae 121:138−43

doi: 10.1016/j.scienta.2009.01.032
[10]

Abedi T, Pakniyat H. 2010. Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech Journal of Genetics and Plant Breeding 46:27−34

doi: 10.17221/67/2009-CJGPB
[11]

Verslues PE, Juenger TE. 2011. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Current Opinion in Plant Biology 14:240−45

doi: 10.1016/j.pbi.2011.04.006
[12]

Chaves MM, Maroco JP, Pereira JS. 2003. Understanding plant responses to drought - from genes to the whole plant. Functional Plant Biology 30:239−64

doi: 10.1071/FP02076
[13]

Himes A, Emerson P, McClung R, Renninger H, Rosenstiel T, et al. 2021. Leaf traits indicative of drought resistance in hybrid poplar. Agricultural Water Management 246:106676

doi: 10.1016/j.agwat.2020.106676
[14]

Dong X, Zhang X. 2001. Some observations of the adaptations of sandy shrubs to the arid environment in the Mu Us Sandland: leaf water relations and anatomic features. Journal of Arid Environments 48:41−48

doi: 10.1006/jare.2000.0700
[15]

Oliva SR, Valdés B, Leidi EO. 2009. Accumulation and in vivo tissue distribution of pollutant elements in Erica andevalensis. Science of The Total Environment 407:1929−36

doi: 10.1016/j.scitotenv.2008.12.003
[16]

Salsinha YCF, Maryani, Indradewa D, Purwestri YA, Rachmawati D. 2021. Leaf physiological and anatomical characters contribute to drought tolerance of Nusa Tenggara Timur local rice cultivars. Journal of Crop Science and Biotechnology337−48

doi: 10.1007/s12892-020-00082-1
[17]

Nassuth A, Rahman MA, Nguyen T, Ebadi A, Lee C. 2021. Leaves of more cold hardy grapes have a higher density of small, sunken stomata. Vitis: Journal of Grapevine Research 60:63−67

doi: 10.5073/vitis.2021.60.63-67
[18]

Gong W, Zhuang L, Zhao W, Tian Z. 2009. Anatomical structure and ecological adaptability of two kinds of halophytes (Haloxylon ammondendron Chenopodiaceae and Tamarix ramosissima). Journal of Ecology 29:6764−71

doi: 10.3321/j.issn:1000-0933.2009.12.054
[19]

Chen H. 2018. Study on Physiological and Biochemical Responses to Drought stress and Low Temperature in Rose and SOD gene expression under 4 °C low temperature. Thesis. Kunming University of Science and Technology, Kunming, China. pp. 34−41.

[20]

He Y, Hao C, Yang H, Li Q, Li J. 2020. Effect of drought stress on physiological and biochemical characteristics of roses. Ningxia Journal of Agriculture and Forest 61:12−17

doi: 10.3969/j.issn.1002-204x.2020.07.003
[21]

Gong Z. 2021. Physical response and resistance evaluation of four different editable rose variables to drought stress. Thesis. Ningxia University, Yinchuan, China. pp. 10−20.

[22]

Wintermans JFGM, De Mots A. 1965. Spectrophotometric characteristics of chlorophylls a and b and their pheophytins in ethanol. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis 109:448−53

doi: 10.1016/0926-6585(65)90170-6
[23]

Li Z. 1996. Plant tissue sectioning. Beijing: Peking University Press. pp. 94−98.

[24]

Shao H, Liang Z, Shao M. 2006. Osmotic regulation of 10 wheat (Triticum aestivum L.) genotypes at soil water deficits. Colloids Surf B: Biointerfaces 47:132−39

doi: 10.1016/j.colsurfb.2005.11.028
[25]

Wang S, Wan C, Wang Y, Chen H, Zhou Z, Fu H, et al. 2004. The characteristics of Na+, K+ and free proline distribution in several drought resistant prots of the Alxa Desert, China. Journal of Arid Environments 56:525−39

doi: 10.1016/S0140-1963(03)00063-6
[26]

Martínez JP, Kinet JM, Bajji M, Lutts S. 2005. NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany 56:2421−31

doi: 10.1093/jxb/eri235
[27]

Draper HH, Hadley M. 1990. Malondialdehyde determination as index of lipid Peroxidation. Methods in Enzymology 186:421−31

doi: 10.1016/0076-6879(90)86135-I
[28]

Uyesaka N, Hasegawa S, Ishioka N, Ishioka R, Shio H, et al. 1992. Effects of superoxide anions on red cell deformability and membrane proteins. Biorheology 29:217−29

doi: 10.3233/BIR-1992-292-303
[29]

Vijayan K, Chakraborti SP, Ghosh PD. 2002. Salinity induced cell membrane damage in mulberry (morus spp.). Indian Journal of Sericulture 41:70−73

[30]

Kiran S, Kusvuran, Talhouni M, Sonmez K, Ellialtioglu S, et al. 2016. Studies on some biochemical changes and ion regulation in some tomato genotypes exposed to drought stress. Acta Horticulturae 1142:369−76

[31]

Ying Y, Song L, Jacobs DF, Mei L, Liu P, et al. 2015. Physiological response to drought stress in Camptotheca acuminata seedlings from two provenances. Frontiers in Plant Science 6:361

doi: 10.3389/fpls.2015.00361
[32]

Fang M, Wang Y, Zhao Y, Reziya, Ai, et al. 2022. Morphological and physiological responses of eight alfalfa cultivars to combined stress of cold and drought. Acta Agrestia Sinica 30:2967−74

doi: 10.11733/j.issn.1007-0435.2022.11.013
[33]

Bacelar EA, Correia CM, Moutinho-Pereira JM, Gonçalves BC, Lopes JI, et al. 2004. Sclerophylly and leaf anatomical traits of five field-grown olive cultivars growing under drought conditions. Tree Physiology 24:233−39

doi: 10.1093/treephys/24.2.233
[34]

Kosma DK. 2009. Cuticle lipid involvement in plant environmental stress tolerance and fruit development. Dissertations & Theses. Purdue University, USA. pp. 563−70

[35]

Zheng L, Van Labeke MC. 2017. Long-term effects of red- and blue-light emitting diodes on leaf anatomy and photosynthetic efficiency of three ornamental pot plants. Frontiers in Plant Science 8:917

doi: 10.3389/fpls.2017.00917
[36]

Terashima I, Inoue Y. 1984. Comparative photosynthetic properties of palisade tissue chloroplasts and spongy tissue chloroplasts of Camellia japonica L.: functional adjustment of the photosynthetic apparatus to light environment within a leaf. Plant and Cell Physiology 25:555−63

doi: 10.1093/oxfordjournals.pcp.a076745
[37]

Feng L, Feng Z, Zhao L, Sheng L. 2007. Comparison of photosynthetic characteristics between wild plants and cultivars of Rosa rugosa. Scientia Silvae Sinicae 43:31−36

doi: 10.3321/j.issn:1001-7488.2007.02.006