[1] |
Wilkin P, Schols P, Chase MW, Chayamarit K, Furness CA, et al. 2005. A plastid gene phylogeny of the yam genus, Dioscorea: roots, fruits and Madagascar. Systematic Botany 30:736−49 doi: 10.1600/036364405775097879 |
[2] |
Darkwa K, Olasanmi B, Asiedu R, and Asfaw A. 2020. Review of empirical and emerging breeding methods and tools for yam (Dioscorea spp.) improvement: status and prospects. Plant Breeding 139:474−97 doi: 10.1111/pbr.12783 |
[3] |
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR, Kolade O, et al. 2022. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nature Communications 13:2001 doi: 10.1038/s41467-022-29114-w |
[4] |
Zannou A, Ahanchédé A, Struik PC, Richards P, Zoundjihékpon J, et al. 2004. Yam and cowpea diversity management by farmers in the Guinea-Sudan transition zone of Benin. NJAS: Wageningen Journal of Life Sciences 52:393−420 doi: 10.1016/S1573-5214(04)80023-X |
[5] |
Epping J, Laibach N. 2020. An underutilized orphan tuber crop—Chinese yam: a review. Planta 252:58 doi: 10.1007/s00425-020-03458-3 |
[6] |
Mabhaudhi T, Chimonyo VGP, Hlahla S, Massawe F, Mayes S, et al. 2019. Prospects of orphan crops in climate change. Planta 250:695−708 doi: 10.1007/s00425-019-03129-y |
[7] |
Cao T, Wang S, Ali A, Shan N, Sun J, et al. 2023. Transcriptome and metabolome analysis reveals the potential mechanism of tuber dynamic development in yam (Dioscorea polystachya Turcz.). LWT 181:114764 doi: 10.1016/j.lwt.2023.114764 |
[8] |
Zhang X, Zhang Y, Guo Y, Xue P, Xue Z, et al. 2023. Research progress of diosgenin extraction from Dioscorea zingiberensis C. H. Wright: inspiration of novel method with environmental protection and efficient characteristics. Steroids 192:109181 doi: 10.1016/j.steroids.2023.109181 |
[9] |
Tamiru M, Natsume S, Takagi H, White B, Yaegashi H, et al. 2017. Genome sequencing of the staple food crop white Guinea yam enables the development of a molecular marker for sex determination. BMC Biology 15:86 doi: 10.1186/s12915-017-0419-x |
[10] |
Sasaki T, Burr B. 2000. International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Current Opinion in Plant Biology 3:138−41 doi: 10.1016/S1369-5266(99)00047-3 |
[11] |
Goff SA, Ricke D, Lan TH, Presting G, Wang R, et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92−100 doi: 10.1126/science.1068275 |
[12] |
Sugihara Y, Darkwa K, Yaegashi H, Natsume S, Shimizu M, et al. 2020. Genome analyses reveal the hybrid origin of the staple crop white Guinea yam (Dioscorea rotundata). Proceedings of the National Academy of Sciences of the United States of America 117:31987−92 doi: 10.1073/pnas.2015830117 |
[13] |
Siadjeu C, Pucker B, Viehöver P, Albach DC, Weisshaar B. 2020. High contiguity de novo genome sequence assembly of Trifoliate yam (Dioscorea dumetorum) using long read sequencing. Genes 11:274 doi: 10.3390/genes11030274 |
[14] |
Cheng J, Chen J, Liu X, Li X, Zhang W, et al. 2021. The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Communications 2:100079 doi: 10.1016/j.xplc.2020.100079 |
[15] |
Li Y, Tan C, Li Z, Guo J, Li S, et al. 2022. The genome of Dioscorea zingiberensis sheds light on the biosynthesis, origin and evolution of the medicinally important diosgenin saponins. Horticulture Research 9:uhac165 doi: 10.1093/hr/uhac165 |
[16] |
Natsume S, Yaegashi H, Sugihara Y, Abe A, Shimizu M, et al. 2022. Whole genome sequencing of a wild yam species Dioscorea tokoro reveals a genomic region associated with sex. bioRxiv doi: 10.1101/2022.06.11.495741 |
[17] |
Cormier F, Lawac F, Maledon E, Gravillon MC, Nudol E, et al. 2019. A reference high-density genetic map of greater yam (Dioscorea alata L.). Theoretical and Applied Genetics 132:1733−44 doi: 10.1007/s00122-019-03311-6 |
[18] |
Cormier F, Martin G, Vignes H, Lachman L, Cornet D, et al. 2021. Genetic control of flowering in greater yam (Dioscorea alata L.). BMC Plant Biology 21:163 doi: 10.1186/s12870-021-02941-7 |
[19] |
Marker RE, Tsukamoto T, Turner DL. 1940. Sterols. C. Diosgenin. Journal of the American Chemical Society 62:2525−32 doi: 10.1021/ja01866a072 |
[20] |
Hansen DR, Dastidar SG, Cai Z, Penaflor C, Kuehl JV, et al. 2007. Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Molecular Phylogenetics and Evolution 45:547−63 doi: 10.1016/j.ympev.2007.06.004 |
[21] |
Mariac C, Scarcelli N, Pouzadou J, Barnaud A, Billot C, et al. 2014. Cost-effective enrichment hybridization capture of chloroplast genomes at deep multiplexing levels for population genetics and phylogeography studies. Molecular Ecology Resources 14:1103−13 doi: 10.1111/1755-0998.12258 |
[22] |
Wu L, Wang B, Yang J, Song C, Wang P, et al. 2016. The chloroplast genome sequence of an important medicinal plant Dioscorea nipponica. Mitochondrial DNA Part A 27:2559−60 doi: 10.3109/19401736.2015.1038803 |
[23] |
Zhou W, Chen C, Hua WP, Wang ZZ. 2016. The complete chloroplast genome sequence of Dioscorea zingiberensis (Dioscoreceae). Mitochondrial DNA Part A 27:2730−31 doi: 10.3109/19401736.2015.1046168 |
[24] |
Zhao Z, Wang X, Yu Y, Yuan S, Jiang D, et al. 2018. Complete chloroplast genome sequences of Dioscorea: characterization, genomic resources, and phylogenetic analyses. PeerJ 6:e6032 doi: 10.7717/peerj.6032 |
[25] |
Magwé-Tindo J, Wieringa JJ, Sonké B, Zapfack L, Vigouroux Y, et al. 2019. Complete plastome sequences of 14 African yam species (Dioscorea spp.). Mitochondrial DNA Part B 4:74−76 doi: 10.1080/23802359.2018.1536466 |
[26] |
Cao T, Zhu Q, Chen X, Wang P, Shan N, et al. 2020. The complete chloroplast genome sequence of the Dioscorea persimilis Prain et Burkill (Dioscoreaceae). Mitochondrial DNA Part B 5:451−52 doi: 10.1080/23802359.2019.1704645 |
[27] |
Chen X, Cai L, Zhang Y, Su W, Li B, et al. 2020. The complete chloroplast genome sequence of the Dioscorea esculenta (Lour.) Burkill (Dioscoreaceae). Mitochondrial DNA Part B 5:3786−88 doi: 10.1080/23802359.2020.1832593 |
[28] |
Hu N, Gong J, Zhang B. 2021. Characterization of the complete chloroplast genome of Dioscorea polystachya Turcz. Mitochondrial DNA Part B 6:1652−53 doi: 10.1080/23802359.2021.1927222 |
[29] |
Wonok W, Sudmoon R, Tanee T, Lee SY, Chaveerach A. 2023. Complete chloroplast genome of four Thai native Dioscorea species: structural, comparative and phylogenetic analyses. Genes 14:703 doi: 10.3390/genes14030703 |
[30] |
Weldemichael MY, Gebremedhn HM. 2023. Omics technologies towards sesame improvement: a review. Molecular Biology Reports 50:6885−99 doi: 10.1007/s11033-023-08551-w |
[31] |
Li J, Zhao X, Dong Y, Li S, Yuan J, et al. 2020. Transcriptome analysis reveals key pathways and hormone activities involved in early microtuber formation of Dioscorea opposita. BioMed Research International 2020:8057929 doi: 10.1155/2020/8057929 |
[32] |
Sarah G, Homa F, Pointet S, Contreras S, Sabot F, et al. 2017. A large set of 26 new reference transcriptomes dedicated to comparative population genomics in crops and wild relatives. Molecular Ecology Resources 17:565−80 doi: 10.1111/1755-0998.12587 |
[33] |
Girma G, Natsume S, Carluccio AV, Takagi H, Matsumura H, et al. 2019. Identification of candidate flowering and sex genes in white Guinea yam (D. rotundata Poir.) by SuperSAGE transcriptome profiling. PLoS One 14:e0216912 doi: 10.1371/journal.pone.0216912 |
[34] |
Zhou Y, Luo S, Hameed S, Xiao D, Zhan J, et al. 2020. Integrated mRNA and miRNA transcriptome analysis reveals a regulatory network for tuber expansion in Chinese yam (Dioscorea opposita). BMC Genomics 21:117 doi: 10.1186/s12864-020-6492-5 |
[35] |
Wu Z, Jiang W, Tao Z, Pan X, Yu W, et al. 2020. Morphological and stage-specific transcriptome analyses reveal distinct regulatory programs underlying yam (Dioscorea alata L.) bulbil growth. Journal of Experimental Botany 71:1899−914 doi: 10.1093/jxb/erz552 |
[36] |
Hou D, Wang Y, Zhang R, Zhao X, Ma Z, et al. 2023. Leaf and rhizome transcriptome assembly and expression analysis of genes involved in terpene biosynthesis in Dioscorea opposita. Journal of Plant Biochemistry and Biotechnology 32:63−75 doi: 10.1007/s13562-022-00781-6 |
[37] |
Zhang Y, Guo S, Shao Y, Zhao L, Xing L, et al. 2021. Transciptome analysis molecular mechanism of starch synthesis during tuber development in Chinese yam (Dioscorea opposita). Journal of Biobased Materials and Bioenergy 15:589−97 doi: 10.1166/jbmb.2021.2103 |
[38] |
Wu Z, Jiang W, Mantri N, Bao X, Chen S, et al. 2015. Transciptome analysis reveals flavonoid biosynthesis regulation and simple sequence repeats in yam (Dioscorea alata L.) tubers. BMC Genomics 16:346 doi: 10.1186/s12864-015-1547-8 |
[39] |
Yan L, Yang H, Ye Q, Huang Z, Zhou H, et al. 2022. Metabolome and transcriptome profiling reveal regulatory network and mechanism of flavonoid biosynthesis during color formation of Dioscorea cirrhosa L. PeerJ 10:e13659 doi: 10.7717/peerj.13659 |
[40] |
Hong S, Wu H, Zhong L, Xiong S, Luo X, et al. 2018. Transcriptome analysis of Dioscorea bulbifera L. microtubers conserved in vitro at low temperature. Bulletin of Botannical Research 38:100−09 doi: 10.7525/j.issn.1673-5102.2018.01.012 |
[41] |
Siadjeu C, Mayland-Quellhorst E, Pande S, Laubinger S, Albach DC. 2021. Transcriptome sequence reveals candidate genes involving in the post-harvest hardening of Trifoliate yam Dioscorea dumetorum. Plants 10:787 doi: 10.3390/plants10040787 |
[42] |
Hua S, Chen Z, Li L, Lin KH, Zhang Y, et al. 2021. Differences in immunity between pathogen-resistant and -susceptible yam cultivars reveal insights into disease prevention underlying ethylene supplementation. Journal of Plant Biochemistry and Biotechnology 30:254−64 doi: 10.1007/s13562-020-00582-9 |
[43] |
Graves PR, Haystead TAJ. 2002. Molecular biologist's guide to proteomics. Microbiology and Molecular Biology Reviews 66:39−63 doi: 10.1128/mmbr.66.1.39-63.2002 |
[44] |
Sharma S, Deswal R. 2021. Dioscorea Alata tuber proteome analysis uncovers differentially regulated growth-associated pathways of tuber development. Plant and Cell Physiology 62:191−204 doi: 10.1093/pcp/pcaa151 |
[45] |
Sun D, Hong Y, Chen H, Gao X. 2021. Analysis of Chinese yam proteins and the itch-causing components. Journal of China Medical University 50:1069−75 |
[46] |
Guo S, Wang D, Ma Y, Zhang Y, Zhao X. 2021. Combination of RNA-Seq transcriptomics and iTRAQ proteomics reveal the mechanism involved in fresh-cut yam yellowing. Scientific Reports 11:7755 doi: 10.1038/s41598-021-87423-4 |
[47] |
Zeng X, Liu D, Huang L. 2021. Metabolome profiling of eight Chinese yam (Dioscorea polystachya Turcz.) varieties reveals metabolite diversity and variety specific uses. Life 11:687 doi: 10.3390/life11070687 |
[48] |
Price EJ, Bhattacharjee R, Lopez-Montes A, Fraser PD. 2017. Metabolite profiling of yam (Dioscorea spp.) accessions for use in crop improvement programmes. Metabolomics 13:144 doi: 10.1007/s11306-017-1279-7 |
[49] |
Price EJ, Drapal M, Perez-Fons L, Amah D, Bhattacharjee R, et al. 2020. Metabolite database for root, tuber, and banana crops to facilitate modern breeding in understudied crops. The Plant Journal 101:1258−68 doi: 10.1111/tpj.14649 |
[50] |
Drapal M, Perez-Fons L, Price EJ, Amah D, Bhattacharjee R, et al. 2022. Datasets from harmonised metabolic phenotyping of root, tuber and banana crop. Data Brief 42:108041 doi: 10.1016/j.dib.2022.108041 |
[51] |
Han Y, Wang J, Zhang X, Song Z, Ma F, et al. 2023. A 1H NMR-based metabolomics approach for the identification of differential metabolites between Chinese yam tubers and yam bulbils. Journal of Food Composition and Analysis 116:105097 doi: 10.1016/j.jfca.2022.105097 |
[52] |
Adaramola TF, Sonibare MA, Sartie A, Lopez-Montes A, Franco J, et al. 2016. Integration of ploidy level, secondary metabolite profile and morphological traits analyses to define a breeding strategy for trifoliate yam (Dioscorea dumetorum (Kunth) Pax). Plant Genetic Resources 14:1−10 doi: 10.1017/S1479262114000975 |
[53] |
Barman P, Bhat KV, Geeta R. 2018. Phylogenetic analysis of Indian Dioscorea and comparison of secondary metabolite content with sampling across the tree. Genetic Resources and Crop Evolution 65:1003−12 doi: 10.1007/s10722-017-0591-4 |
[54] |
Lebot V, Malapa R, Abraham K, Molisalé T, Van Kien N, et al. 2018. Secondary metabolites content may clarify the traditional selection process of the greater yam cultivars (Dioscorea alata L.). Genetic Resources and Crop Evolution 65:1699−709 doi: 10.1007/s10722-018-0647-0 |
[55] |
Chen M, Sun X, Xue J, Zhou Y, Hang Y. 2022. Evolution of reproductive traits and implications for adaptation and diversification in the yam genus Dioscorea L. Diversity 14:349 doi: 10.3390/d14050349 |