[1]

Rajput MA, Rajput NA, Syed RN, Lodhi AM, Que Y. 2021. Sugarcane smut: current knowledge and the way forward for management. Journal of Fungi 7(12):1095

doi: 10.3390/jof7121095
[2]

Lam E, Shine J Jr, Da Silva J, Lawton M, Bonos S, et al. 2009. Improving sugarcane for biofuel: engineering for an even better feedstock. GCB Bioenergy 1:251−55

doi: 10.1111/j.1757-1707.2009.01016.x
[3]

Chen R, Xu L, Lin Y, Deng Z, Zhang M, et al. 2011. Modern sugarcane genetic breeding. Beijing: China Agriculture Press. pp: 2–12.

[4]

Zhang Y, Wang L, Lu W, Wu C, Liu J, et al. 2022. Modern sugarcane breeding theory and variety selection-Heterogeneous complex resistant, high yield and high sugar breeding and application. Beijing: Science Press.

[5]

Liang Q, Liu X, Li Y, Lin L, Wang Z, et al. 2021. Growth and decline of sugarcane cultivar 'ROC22' in Guangxi sugarcane area from 2008 to 2017. Chinese Journal of Tropical Crops 42:982−90

doi: 10.3969/j.issn.1000-2561.2021.04.011
[6]

Zhang Y, Zhao P, Hu C, Que Y. 2024. The recent achievements and development trends of sugarcane improvement in China. China Sugar 46:87−92

doi: 10.13570/j.cnki.scc.2024.01.010
[7]

Luo J, Pan YB, Xu L, Grisham MP, Zhang H, et al. 2015. Rational regional distribution of sugarcane cultivars in China. Scientific Reports 5:15721

doi: 10.1038/srep15721
[8]

Luo J, Pan YB, Que Y, Zhang H, Grisham MP, et al. 2015. Biplot evaluation of test environments and identification of mega-environment for sugarcane cultivars in China. Scientific Reports 5:15505

doi: 10.1038/srep15505
[9]

Zhao P, Xia H, Liu J, Wu C, Zhao J, et al. 2019. Registration of 'YZ081609' sugarcane. Journal of Plant Registrations 13:362−67

doi: 10.3198/jpr2018.10.0068crc
[10]

Liu J, Zhao P, Yang K, Xia H, Wu C, et al. 2016. Breeding of new sugarcane variety, Yunzhe05-51. Sugar Crops of China 38(1):8−10

doi: 10.13570/j.cnki.scc.2016.01.003
[11]

Zhao P, Liu J, Yang K, Xia H, Wu C, et al. 2015. Registration of 'YZ05-51' sugarcane. Journal of Plant Registrations 9:172−78

doi: 10.3198/jpr2014.03.0017crc
[12]

Que Y, Wu Q, Zhang H, Luo J, Zhang Y. 2024. Developing new sugarcane varieties suitable for mechanized production in China: principles, strategies and prospects. Frontiers in Plant Science 14:1337144

doi: 10.3389/fpls.2023.1337144
[13]

Lu G, Liu P, Wu Q, Zhang S, Zhao P, et al. 2024. Sugarcane breeding: a fantastic past and promising future driven by technology and methods. Frontiers in Plant Science 15:1375934

doi: 10.3389/fpls.2024.1375934
[14]

Zhang Q, Qi Y, Zhang C, Chen Y, Deng H. 2009. Pedigree analysis of genetic relationship among core parents of sugarcane in mainland China. Guangdong Agricultural Sciences 10:44−48

doi: 10.16768/j.issn.1004-874x.2009.10.017
[15]

Qi Y, Deng H, Li Q. 2012. Advance in utilization of sugarcane germplasm in China mainland. Crop Research 26:443−46

doi: 10.3969/j.issn.1001-5280.2012.05.08
[16]

Liu F, Xing S, Ma H, Du Z, Ma B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology 97:9155−64

doi: 10.1007/s00253-013-5193-2
[17]

Yu Z, Song M, Pei H, Jiang L, Hou Q, et al. 2017. The effects of combined agricultural phytohormones on the growth, carbon partitioning and cell morphology of two screened algae. Bioresource Technology 239:87−96

doi: 10.1016/j.biortech.2017.04.120
[18]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[19]

Bar-Even A. 2018. Daring metabolic designs for enhanced plant carbon fixation. Plant Science 273:71−83

doi: 10.1016/j.plantsci.2017.12.007
[20]

Ducat DC, Silver PA. 2012. Improving carbon fixation pathways. Current Opinion in Chemical Biology 16:337−44

doi: 10.1016/j.cbpa.2012.05.002
[21]

Patel M, Berry JO. 2008. Rubisco gene expression in C4 plants. Journal of Experimental Botany 59(7):1625−34

doi: 10.1093/jxb/erm368
[22]

Vanstraelen M, Benková E. 2012. Hormonal interactions in the regulation of plant development. Annual Review of Cell and Developmental Biology 28:463−87

doi: 10.1146/annurev-cellbio-101011-155741
[23]

Yu Z, Zhang F, Friml J, Ding Z. 2022. Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology 64(2):371−92

doi: 10.1111/jipb.13225
[24]

Nakano T, Kimbara J, Fujisawa M, Kitagawa M, Ihashi N, et al. 2012. MACROCALYX and JOINTLESS interact in the transcriptional regulation of tomato fruit abscission zone development. Plant Physiology 158(1):439−50

doi: 10.1104/pp.111.183731
[25]

Gao X, Fu X. 2018. Research progress for the gibberellin signaling and action on plant growth and development. Biotechnology Bulletin 34(7):1−13

doi: 10.13560/j.cnki.biotech.bull.1985.2018-0447
[26]

Shani E, Hedden P, Sun TP. 2024. Highlights in gibberellin research: A tale of the dwarf and the slender. Plant Physiology 195:111−34

doi: 10.1093/plphys/kiae044
[27]

Volenec ZM, Belovsky GE. 2018. The interaction of temperature and precipitation determines productivity and diversity in a bunchgrass prairie ecosystem. Oecologia 188(3):913−20

doi: 10.1007/s00442-018-4247-7
[28]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62(1):25−54

doi: 10.1111/jipb.12899
[29]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23(10):663−79

doi: 10.1038/s41580-022-00499-2
[30]

Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, et al. 2010. MYB transcription factors in Arabidopsis. Trends in Plant Science 15(10):573−81

doi: 10.1016/j.tplants.2010.06.005
[31]

Wani SH, Anand S, Singh B, Bohra A, Joshi R. 2021. WRKY transcription factors and plant defense responses: latest discoveries and future prospects. Plant Cell Reports 40(7):1071−85

doi: 10.1007/s00299-021-02691-8
[32]

Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, et al. 2020. Advances in AP2/ERF super-family transcription factors in plant. Critical Review in Biotechnology 40(6):750−76

doi: 10.1080/07388551.2020.1768509
[33]

Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. NAC transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1819(2):97−103

doi: 10.1016/j.bbagrm.2011.10.005
[34]

Han H, Wang C, Yang X, Wang L, Ye J, et al. 2023. Role of bZIP transcription factors in the regulation of plant secondary metabolism. Planta 258(1):13

doi: 10.1007/s00425-023-04174-4
[35]

Wu Q, Chen Y, Zou W, Pan YB, Lin P, et al. 2023. Genome-wide characterization of sugarcane catalase gene family identifies a ScCAT1 gene associated disease resistance. International Journal of Biological Macromolecules 232:123398

doi: 10.1016/j.ijbiomac.2023.123398
[36]

Sun T, Meng Y, Cen G, Feng A, Su W, et al. 2022. Genome-wide identification and expression analysis of the coronatine-insensitive 1 (COI1) gene family in response to biotic and abiotic stresses in Saccharum. BMC Genomics 23:38

doi: 10.1186/s12864-021-08255-0
[37]

Yadav V, Wang Z, Wei C, Amo A, Ahmed B, et al. 2020. Phenylpropanoid pathway engineering: An emerging approach towards plant defense. Pathogens 9:312

doi: 10.3390/pathogens9040312
[38]

Dong NQ, Lin HX. 2021. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. Journal of Integrative Plant Biology 63:180−209

doi: 10.1111/jipb.13054
[39]

Zhang P, Du H, Wang J, Pu Y, Yang C, et al. 2020. Multiplex CRISPR/Cas9-mediated metabolic engineering increases soya bean isoflavone content and resistance to soya bean mosaic virus. Plant Biotechnology Journal 18:1384−95

doi: 10.1111/pbi.13302
[40]

Wani SH, Kumar V, Shriram V, Sah SK. 2016. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop Journal 4:162−76

doi: 10.1016/j.cj.2016.01.010
[41]

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111:1021−58

doi: 10.1093/aob/mct067
[42]

Zhao Z, Zhang R, Wang D, Zhang J, Zang S, et al. 2023. Dissecting the features of TGA gene family in Saccharum and the functions of ScTGA1 under biotic stresses. Plant Physiology Biochemistry 200:107760

doi: 10.1016/j.plaphy.2023.107760
[43]

Binder BM. 2020. Ethylene signaling in plants. Journal of Biological Chemistry 295(22):7710−25

doi: 10.1074/jbc.REV120.010854
[44]

Wu Q, Su Y, Pan Y-B, Xu F, Zou W, et al. 2022. Genetic identification of SNP markers and candidate genes associated with sugarcane smut resistance using BSR-Seq. Frontiers in Plant Science 13:1035266

doi: 10.3389/fpls.2022.1035266