[1] |
Dai S, Long Y. 2015. Genotyping analysis using an RFLP assay. Methods in Molecular Biology 1245:91−99 doi: 10.1007/978-1-4939-1966-6_7 |
[2] |
Thilaga S, Rahul Nair R, Rajesh Kannan M, Ganesh D. 2017. RAPD markers for screening shoot gall maker (Betousa stylophora Swinhoe) tolerant genotypes of amla (Phyllanthus emblica L.). Journal of Genetic Engineering and Biotechnology 15:323−30 doi: 10.1016/j.jgeb.2017.07.003 |
[3] |
Ranamukhaarachchi DG, Kane ME, Guy CL, Li QB. 2000. Modified AFLP technique for rapid genetic characterization in plants. BioTechniques 29:858−59 doi: 10.2144/00294rr02 |
[4] |
Li X, Qiao L, Chen B, Zheng Y, Zhi C, et al. 2022. SSR markers development and their application in genetic diversity evaluation of garlic (Allium sativum) germplasm. Plant Diversity 44:481−91 doi: 10.1016/j.pld.2021.08.001 |
[5] |
Hiraoka Y, Ferrante SP, Wu GA, Federici CT, Roose ML. 2024. Development and assessment of SNP genotyping arrays for citrus and its close relatives. Plants 13:691 doi: 10.3390/plants13050691 |
[6] |
Zhang J, Yang J, Zhang L, Luo J, Zhao H, et al. 2020. A new SNP genotyping technology target SNP-seq and its application in genetic analysis of cucumber varieties. Scientific Reports 10:5623 doi: 10.1038/s41598-020-62518-6 |
[7] |
Si Z, Jin S, Li J, Han Z, Li Y, et al. 2022. The design, validation, and utility of the "ZJU CottonSNP40K" liquid chip through genotyping by target sequencing. Industrial Crops & Products 188:115629 doi: 10.1016/j.indcrop.2022.115629 |
[8] |
Li A, Acevedo-Rocha CG, Sun Z, Cox T, Xu JL, et al. 2018. Beating bias in the directed evolution of proteins: combining high-fidelity on-chip solid-phase gene synthesis with efficient gene assembly for combinatorial library construction. Chembiochem 19:221−228 doi: 10.1002/cbic.201700540 |
[9] |
Jin X, Fu R, Du W, Shan X, Mao Z, et al. 2022. Rapid, highly sensitive, and label-free pathogen assay system using a solid-phase self-interference recombinase polymerase amplification chip and hyperspectral interferometry. Analytical Chemistry 94:2926−2933 doi: 10.1021/acs.analchem.1c04858 |
[10] |
Wöhrle J, Krämer SD, Meyer PA, Rath C, Hügle M, et al. 2020. Digital DNA microarray generation on glass substrates. Scientific Reports 10:5770 doi: 10.1038/s41598-020-62404-1 |
[11] |
Bremer A, Mittag T, Heymann M. 2020. Microfluidic characterization of macromolecular liquid-liquid phase separation. Lab on Chip 20:4225−4234 doi: 10.1039/D0LC00613K |
[12] |
Chen H, Han Z, Ma Q, Dong C, Ning X, et al. 2022. Identification of elite fiber quality loci in upland cotton based on the genotyping-by-target-sequencing technology. Frontiers in Plant Science 13:1027806 doi: 10.3389/fpls.2022.1027806 |
[13] |
Xiang M, Liu S, Wang X, Zhang M, Yan W, et al. 2023. Development of breeder chip for gene detection and molecular-assisted selection by target sequencing in wheat. Molecular Breeding 43:13 doi: 10.1007/s11032-023-01359-3 |
[14] |
Yuan D, Kong J, Li X, Fang X, Chen Q. 2018. Colorimetric LAMP microfluidic chip for detecting three allergens: peanut, sesame and soybean. Scientific Reports 8:8682 doi: 10.1038/s41598-018-26982-5 |
[15] |
Kim KW, Nawade B, Nam J, Chu SH, Ha J, et al. 2022. Development of an inclusive 580K SNP array and its application for genomic selection and genome-wide association studies in rice. Frontiers in Plant Science 13:1036177 doi: 10.3389/fpls.2022.1036177 |
[16] |
Morales KY, Singh N, Perez FA, Ignacio JC, Thapa R, et al. 2020. An improved 7K SNP array, the C7AIR, provides a wealth of validated SNP markers for rice breeding and genetics studies. PLoS One 15:e0232479 doi: 10.1371/journal.pone.0232479 |
[17] |
Rousset A, Amor A, Punvichai T, Perino S, Palu S, et al. 2021. Guayule (Parthenium argentatum A. Gray), a renewable resource for natural polyisoprene and resin: composition, processes and applications. Molecules 26:664 doi: 10.3390/molecules26030664 |
[18] |
Priyadarshan PM, Goncalves PDS. 2003. Hevea gene pool for breeding. Genetic Resources and Crop Evolution 50:101−14 doi: 10.1023/A:1022972320696 |
[19] |
Chao J, Wu S, Shi M, Xu X, Gao Q, et al. 2023. Genomic insight into domestication of rubber tree. Nature Communications 14:4651 doi: 10.1038/s41467-023-40304-y |
[20] |
Onokpise OU. 2004. Natural rubber, Hevea brasiliensis (Willd. ex a. Juss.) Müll. Arg., germplasm collection in the Amazon basin, Brazil: a retrospective. Economic Botany 58:544−55 doi: 10.1663/0013-0001(2004)058[0544:NRHBWE]2.0.CO;2 |
[21] |
Schultes RE. 1977. The odyssey of the cultivated rubber tree. Endeavour 1:133−38 doi: 10.1016/0160-9327(77)90172-7 |
[22] |
Supriya R, Priyadarshan PM. 2019. Genomic technologies for Hevea breeding. In Advances in Genetics, ed. Dhavendra K. San Diego, USA: Academic Press. vol. 104. pp. 1−73. https://doi.org/10.1016/bs.adgen.2019.04.001 |
[23] |
Yang Q, Zhang J, Shi X, Chen L, Qin J, et al. 2023. Development of SNP marker panels for genotyping by target sequencing (GBTS) and its application in soybean. Molecular Breeding 43(4):26 doi: 10.1007/s11032-023-01372-6 |
[24] |
Wang R, Xing S, Bourke PM, Qi X, Lin M, et al. 2023. Development of a 135K SNP genotyping array for Actinidia arguta and its applications for genetic mapping and QTL analysis in kiwifruit. Plant Biotechnology Journal 21:369−80 doi: 10.1111/pbi.13958 |
[25] |
Sun C, Dong Z, Zhao L, Ren Y, Zhang N, et al. 2020. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnology Journal 18:1354−60 doi: 10.1111/pbi.13361 |
[26] |
Liu J, Shi C, Shi CC, Li W, Zhang QJ, et al. 2020. The chromosome-based rubber tree genome provides new insights into spurge genome evolution and rubber biosynthesis. Molecular Plant 13:336−50 doi: 10.1016/j.molp.2019.10.017 |
[27] |
Pootakham W, Sonthirod C, Naktang C, Ruang-Areerate P, Yoocha T, et al. 2017. De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species. Scientific Reports 7:41457 doi: 10.1038/srep41457 |
[28] |
Tang C, Yang M, Fang Y, Luo Y, Gao S, et al. 2016. The rubber tree genome reveals new insights into rubber production and species adaptation. Nature Plants 2:16073 doi: 10.1038/nplants.2016.73 |
[29] |
Lau NS, Makita Y, Kawashima M, Taylor TD, Kondo S, et al. 2016. The rubber tree genome shows expansion of gene family associated with rubber biosynthesis. Scientific Reports 6:28594 doi: 10.1038/srep28594 |
[30] |
Rahman AYA, Usharraj AO, Misra BB, Thottathil GP, Jayasekaran K, et al. 2013. Draft genome sequence of the rubber tree Hevea brasiliensis. BMC Genomics 14:75 doi: 10.1186/1471-2164-14-75 |
[31] |
Hussein MAA, Eid M, Rahimi M, Filimban FZ, Abd El-Moneim D. 2023. Comparative assessment of SSR and RAPD markers for genetic diversity in some Mango cultivars. Peer J 11:e15722 doi: 10.7717/peerj.15722 |