[1] |
Barnes J, Anderson LA, Gibbons S, Phillipson JD. 2005. Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties. Journal of Pharmacy and Pharmacology 57(8):929−54 doi: 10.1211/0022357056127 |
[2] |
Gajurel PR, Kashung S, Nopi s, Panmei R, Singh B. 2021. Can the Ayurvedic pippali plant (Piper longum L.) be a good option for livelihood and socio-economic development for Indian farmers? Current science 120(10):1567 doi: 10.18520/cs/v120/i10/1567-1572 |
[3] |
Kang Y, Mao YF, Sheng LY, et al. 2022. China Statistical Yearbook-2022. International Trade and Economic Cooperation: 11-6 Major Exported Commodoties in Quantity and Value (2021), ed. Wang JS, China Statistical Press. |
[4] |
Menggala SR, Vanhove W, Muhammad DRA, Rahman A, Speelman S, et al. 2021. The Effect of Geographical Indications (GIs) on the Koerintji Cinnamon Sales Price and Information of Origin. Agronomy 11(7):1410 doi: 10.3390/agronomy11071410 |
[5] |
van Der Heijden R, Jacobs DI, Snoeijer W, Hallard D, Verpoorte R. 2004. The Catharanthus alkaloids: pharmacognosy and biotechnology. Current Medicinal Chemistry 11(5):607−28 doi: 10.2174/0929867043455846 |
[6] |
Malik S, Cusidó RM, Mirjalili MH, Moyano E, Palazón J, et al. 2011. Production of the anticancer drug taxol in Taxus baccata suspension cultures: A review. Process Biochemistry 46(1):23−34 doi: 10.1016/j.procbio.2010.09.004 |
[7] |
Liang S, Wen Z, Tang T, Liu Y, Dang F, et al. 2022. Study on flavonoid and bioactivity features of the pericarp of Citri Reticulatae 'chachi' during storage. Arabian Journal of Chemistry 15(3):103653 doi: 10.1016/j.arabjc.2021.103653 |
[8] |
Liu H, Wen J, Xu Y, Wu J, Yu Y, et al. 2022. Evaluation of dynamic changes and formation regularity in volatile flavor compounds in Citrus reticulata 'chachi' peel at different collection periods using gas chromatography-ion mobility spectrometry. LWT 171:114126 doi: 10.1016/j.lwt.2022.114126 |
[9] |
Yang L, Wen KS, Ruan X, Zhao YX, Wei F, et al. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23(4):762 doi: 10.3390/molecules23040762 |
[10] |
Li Y, Kong D, Fu Y, Sussman MR, Wu H. 2020. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiology and Biochemistry 148:80−89 doi: 10.1016/j.plaphy.2020.01.006 |
[11] |
Weremczuk-Jeżyna I, Hnatuszko-Konka K, Lebelt L, Grzegorczyk-Karolak I. 2021. The protective function and modification of secondary metabolite accumulation in response to light stress in Dracocephalum forrestii Shoots. International Journal of Molecular Sciences 22(15):7965 doi: 10.3390/ijms22157965 |
[12] |
Cao S, Shi L, Shen Y, He L, Meng X. 2022. Ecological roles of secondary metabolites of Saposhnikovia divaricata in adaptation to drought stress. PeerJ 10:e14336 doi: 10.7717/peerj.14336 |
[13] |
Lv J, Yang S, Zhou W, Liu Z, Tan J, et al. 2024. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects. Microbiological Research 283:127688 doi: 10.1016/j.micres.2024.127688 |
[14] |
Wu W, Chen W, Liu S, Wu J, Zhu Y, et al. 2021. Beneficial relationships between endophytic bacteria and medicinal plants. Frontiers in Plant Science 12:646146 doi: 10.3389/fpls.2021.646146 |
[15] |
Pang Z, Chen J, Wang T, Gao C, Li Z, et al. 2021. Linking plant secondary metabolites and plant microbiomes: a review. Frontiers in Plant Science 12:621276 doi: 10.3389/fpls.2021.621276 |
[16] |
Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews 37(5):634−63 doi: 10.1111/1574-6976.12028 |
[17] |
Ferreira A, Quecine MC, Lacava PT, Oda S, Azevedo J, et al. 2008. Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiology Letters 287(1):8−14 doi: 10.1111/j.1574-6968.2008.01258.x |
[18] |
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. 2008. Bacterial endophytes: recent developments and applications. FEMS Microbiology Letters 278(1):1−9 doi: 10.1111/j.1574-6968.2007.00918.x |
[19] |
Zhou N, Mu M, Xie H, Wu Y, Zhou Y, et al. 2021. Rhizospheric fungal diversities and soil biochemical factors of Fritillaria taipaiensis over five cultivation years. Horticulturae 7(12):560 doi: 10.3390/horticulturae7120560 |
[20] |
Kui L, Chen B, Chen J, Sharifi R, Dong Y, et al. 2021. A comparative analysis on the structure and function of the Panax notoginseng rhizosphere microbiome. Frontiers in Microbiology 12:673512 doi: 10.3389/fmicb.2021.673512 |
[21] |
Chiellini C, Maida I, Emiliani G, Mengoni A, Mocali S, et al. 2014. Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia. International Microbiology 17(3):165−74 doi: 10.2436/20.1501.01.219 |
[22] |
Chen JM, Feng WM, Yan H, Liu P, Zhou GS, et al. 2022. Explore the interaction between root metabolism and rhizosphere microbiota during the growth of Angelica sinensis. Frontiers in Plant Science 13 doi: 10.3389/fpls.2022.1005711 |
[23] |
Chen J, Wu Y, Zhuang X, Guo J, Hu X, et al. 2022. Diversity analysis of leaf endophytic fungi and rhizosphere soil fungi of Korean Epimedium at different growth stages. Environmental Microbiome 17:52 doi: 10.1186/s40793-022-00446-w |
[24] |
Yang K, Fu R, Feng H, Jiang G, Finkel O, et al. 2023. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. Molecular Plant 16(9):1379−95 doi: 10.1016/j.molp.2023.08.004 |
[25] |
Hartmann M., Six J. 2023. Soil structure and microbiome functions in agroecosystems. Nature Reviews Earth & Environment 4:4−18 doi: 10.1038/s43017-022-00366-w |
[26] |
Thakur M, Bhattacharya S, Khosla PK, Puri S. 2019. Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants 12:1−12 doi: 10.1016/j.jarmap.2018.11.004 |
[27] |
Edmeades DC. 2003. The long-term effects of manures and fertilisers on soil productivity and quality: a review. Nutrient Cycling in Agroecosystems 66(2):165−80 doi: 10.1023/A:1023999816690 |
[28] |
El Gendy AG, El Gohary AE, Omer EA, Hendawy SF, Hussein MS, et al. 2015. Effect of nitrogen and potassium fertilizer on herbage and oil yield of chervil plant (Anthriscus cerefolium L.). Industrial Crops and Products 69:167−74 doi: 10.1016/j.indcrop.2015.02.023 |
[29] |
Liu W, Wang Q, Wang B, Wang X, Franks A, et al. 2015. Changes in the abundance and structure of bacterial communities under long-term fertilization treatments in a peanut monocropping system. Plant and Soil 395(1-2):415−27 doi: 10.1007/s11104-015-2569-3 |
[30] |
Hlongwane MM, Mohammed M, Mokgalaka NS, Dakora FD. 2023. The potential of rhizobacteria to mitigate abiotic stress in Lessertia frutescens. Plants 12:196 doi: 10.3390/plants12010196 |
[31] |
Zhu J, Li M, Whelan M. 2018. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Science of The Total Environment 612:522−37 doi: 10.1016/j.scitotenv.2017.08.095 |
[32] |
Tariq MR, Shaheen F, Mustafa S, ALI S, Fatima A, et al. 2022. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ 10:e13782 doi: 10.7717/peerj.13782 |
[33] |
Tian L, Shi S, Ji L, Nasir F, Ma LN, et al. 2018. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings. International Microbiology 21(3):153−62 doi: 10.1007/s10123-018-0015-0 |
[34] |
Feng WM, Liu P, Yan H, Zhang S, Shang EX, et al. 2021. Impact of Bacillus on phthalides accumulation in Angelica sinensis (Oliv.) by stoichiometry and microbial diversity analysis. Frontiers in Microbiology 11:611143 doi: 10.3389/fmicb.2020.611143 |
[35] |
Huang X, Zeng Z, Chen Z, Tong X, Jiang J, et al. 2022. Deciphering the potential of a plant growth promoting endophyte Rhizobium sp. WYJ-E13, and functional annotation of the genes involved in the metabolic pathway. Frontiers in Microbiology 13:1035167 doi: 10.3389/fmicb.2022.1035167 |
[36] |
Shah S, Shah B, Sharma R, Rekadwad B, Shouche YS, et al. 2022. Colonization with non-mycorrhizal culturable endophytic fungi enhances orchid growth and indole acetic acid production. BMC Microbiology 22:101 doi: 10.1186/s12866-022-02507-z |
[37] |
Phurailatpam L, Gupta A, Sahu PK, Mishra S. 2022. Insights into the functional potential of bacterial endophytes from the ethnomedicinal plant, Piper longum L. Symbiosis 87(2):165−74 doi: 10.1007/s13199-022-00864-x |
[38] |
Liu T, Liao Q, Yu F, Zi S, Tian S, et al. 2022. Plant growth-promoting activities of bacterial endophytes isolated from the medicinal plant Pairs polyphylla var. yunnanensis. World Journal of Microbiology and Biotechnology 38:15 doi: 10.1007/s11274-021-03194-0 |
[39] |
Wang L, Huang X, Li J, Huang J, Bao S, et al. 2022. Metabolites of zearalenone and phytohormones secreted by endophytic fungus strain TH15 regulating the root development in Tetrastigma hemsleyanum. Plant Cell, Tissue and Organ Culture (PCTOC) 150(3):683−94 doi: 10.1007/s11240-022-02321-5 |
[40] |
Han Z, Cui Y, Wang Y, Wang Y, Sun Z, et al. 2022. Effect of rhizospheric fungus on biological control of root rot (Fusarium equiseti) disease of Saposhnikovia divaricata. Agronomy 12(11):2906 doi: 10.3390/agronomy12112906 |
[41] |
Yang S, Zhang X, Cao Z, Zhao K, Wang S, et al. 2014. Growth‐promoting Sphingomonas paucimobilis ZJSH1 associated with Dendrobium officinale through phytohormone production and nitrogen fixation. Microbial Biotechnology 7(6):611−20 doi: 10.1111/1751-7915.12148 |
[42] |
Ding C, Wang S, Li J, Wang Z. 2022. Transcriptomic analysis reveals the mechanism of host growth promotion by endophytic fungus of Rumex gmelinii Turcz. Archives of Microbiology 204(7):443 doi: 10.1007/s00203-022-03072-9 |
[43] |
Jasim B, Joseph AA, John CJ, Mathew J, Radhakrishnan EK. 2014. Isolation and characterization of plant growth promoting endophytic bacteria from the rhizome of Zingiber officinale. 3 Biotech 4(2):197−204 doi: 10.1007/s13205-013-0143-3 |
[44] |
Ali S, Kim WC. 2018. Plant growth promotion under water: decrease of waterlogging-induced ACC and ethylene levels by ACC deaminase-producing bacteria. Frontiers in Microbiology 9:1096 doi: 10.3389/fmicb.2018.01096 |
[45] |
Lyu D, Backer R, Berrué F, Martinez-Farina C, Hui JPM, et al. 2023. Plant Growth-Promoting Rhizobacteria (PGPR) with Microbial Growth Broth Improve Biomass and Secondary Metabolite Accumulation of Cannabis sativa L. Journal of Agricultural and Food Chemistry 71(19):7268−77 doi: 10.1021/acs.jafc.2c06961 |
[46] |
Asghari B, Khademian R, Sedaghati B. 2020. Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L. ) under water shortage condition. Scientia Horticulturae 263:109132 |
[47] |
Liu T, Ren Z, Chunyu WX, Li GD, Chen X, et al. 2022. Exploration of Diverse Secondary Metabolites From Streptomyces sp. YINM00001, Using Genome Mining and One Strain Many Compounds Approach. Frontiers in Microbiology 13:831174 doi: 10.3389/fmicb.2022.831174 |
[48] |
Maithani D, Sharma A, Gangola S, Chaudhary P, Bhatt P. 2022. Insights into applications and strategies for discovery of microbial bioactive metabolites. Microbiological Research 261:127053 doi: 10.1016/j.micres.2022.127053 |
[49] |
Sarang H, Rajani P, Vasanthakumari MM, Kumara PM, Siva R, et al. 2017. An endophytic fungus, Gibberella moniliformis from Lawsonia inermis L. produces lawsone, an orange-red pigment. Antonie van Leeuwenhoek 110(7):853−862 doi: 10.1007/s10482-017-0858-y |
[50] |
Tanapichatsakul C, Khruengsai S, Monggoot S, Pripdeevech P. 2019. Production of eugenol from fungal endophytes Neopestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. PeerJ 7:e6427 doi: 10.7717/peerj.6427 |
[51] |
Peng F, Zhang MY, Hou SY, Chen J, Wu YY, et al. 2020. Insights into Streptomyces spp. isolated from the rhizospheric soil of Panax notoginseng: isolation, antimicrobial activity and biosynthetic potential for polyketides and non-ribosomal peptides. BMC Microbiology 20:143 doi: 10.1186/s12866-020-01832-5 |
[52] |
Rahmat E, Kang Y. 2020. Yeast metabolic engineering for the production of pharmaceutically important secondary metabolites. Applied Microbiology and Biotechnology 104(11):4659−74 doi: 10.1007/s00253-020-10587-y |
[53] |
Ziemert N, Alanjary M, Weber T. 2016. The evolution of genome mining in microbes – a review. Natural Product Reports 33(8):988−1005 doi: 10.1039/C6NP00025H |
[54] |
Zhang S, Zhang L, Zhu J, Chen H, Chen Z, et al. 2021. Genomic and Metabolomic Investigation of a Rhizosphere Isolate Streptomyces netropsis WLXQSS-4 Associated with a Traditional Chinese Medicine. Molecules 26(8):2147 doi: 10.3390/molecules26082147 |
[55] |
Cheng JT, Cao F, Chen XA, Li YQ, Mao XM. 2020. Genomic and transcriptomic survey of an endophytic fungus Calcarisporium arbuscula NRRL 3705 and potential overview of its secondary metabolites. BMC Genomics 21:424 doi: 10.1186/s12864-020-06813-6 |
[56] |
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, et al. 2022. Integrated genomic and metabolomic analysis illuminates key secreted metabolites produced by the novel endophyte Bacillus halotolerans Cal. l. 30 involved in diverse biological control activities. Microorganisms 10(2):399 doi: 10.3390/microorganisms10020399 |
[57] |
Su J, Wang Y, Bai M, Peng T, Li H, et al. 2023. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata 'Chachi'. Microbiome 11:61 doi: 10.1186/s40168-023-01504-2 |
[58] |
Zhang Y, Berman A, Shani E. 2023. Plant hormone transport and localization: signaling molecules on the move. Annual Review of Plant Biology 74(1):453−79 doi: 10.1146/annurev-arplant-070722-015329 |
[59] |
Yang L, Yan Y, Zhao B, Xu H, Su X, et al. 2022. Study on the Regulation of Exogenous Hormones on the Absorption of Elements and the Accumulation of Secondary Metabolites in the Medicinal Plant Artemisia argyi Leaves. Metabolites 12(10):984 doi: 10.3390/metabo12100984 |
[60] |
Luo J, Zhou JJ, Zhang JZ. 2018. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function. International Journal of Molecular Sciences 19(1):259 doi: 10.3390/ijms19010259 |
[61] |
Duca D, Lorv J, Patten CL, Rose D, Glick BR. 2014. Indole-3-acetic acid in plant–microbe interactions. Antonie van Leeuwenhoek 106(1):85−125 doi: 10.1007/s10482-013-0095-y |
[62] |
Pandey SS, Singh S, Pandey H, Srivastava M, Ray T, et al. 2018. Endophytes of Withania somnifera modulate in planta content and the site of withanolide biosynthesis. Scientific Reports 8(1):5450 doi: 10.1038/s41598-018-23716-5 |
[63] |
Zhou JY, Sun K, Chen F, Yuan J, Li X, et al. 2018. Endophytic Pseudomonas induces metabolic flux changes that enhance medicinal sesquiterpenoid accumulation in Atractylodes lancea. Plant Physiology and Biochemistry 130:473−81 doi: 10.1016/j.plaphy.2018.07.016 |
[64] |
Zhang KL, Liu QS, Kang HX, Liu XM, Chen XP, et al. 2020. Herbivore‐induced rice resistance against rice blast mediated by salicylic acid. Insect Science 27(1):49−57 doi: 10.1111/1744-7917.12630 |
[65] |
Pokotylo I, Hodges M, Kravets V, Ruelland E. 2022. A ménage à trois: salicylic acid, growth inhibition, and immunity. Trends in Plant Science 27(5):460−71 doi: 10.1016/j.tplants.2021.11.008 |
[66] |
Kou MZ, Bastías DA, Christensen MJ, Zhong R, Nan ZB, et al. 2021. The plant salicylic acid signalling pathway regulates the infection of a biotrophic pathogen in grasses associated with an Epichloë endophyte. Journal of Fungi 7(8):633 doi: 10.3390/jof7080633 |
[67] |
Safara S, Harighi B, Bahramnejad B, Ahmadi S. 2022. Antibacterial activity of endophytic bacteria against sugar beet root rot agent by volatile organic compound production and induction of systemic resistance. Frontiers in Microbiology 13:921762 doi: 10.3389/fmicb.2022.921762 |
[68] |
Yu Z, Dong W, Teixeira da Silva JA, He C, Si C, et al. 2021. Ectopic expression of DoFLS1 from Dendrobium officinale enhances flavonol accumulation and abiotic stress tolerance in Arabidopsis thaliana. Protoplasma 258(4):803−15 doi: 10.1007/s00709-020-01599-6 |
[69] |
Gao FK, Ren CG, Dai CC. 2012. Signaling effects of nitric oxide, salicylic acid, and reactive oxygen species on isoeuphpekinensin accumulation in Euphorbia pekinensis suspension cells induced by an endophytic fungal elicitor. Journal of Plant Growth Regulation 31(4):490−497 doi: 10.1007/s00344-012-9258-8 |
[70] |
Hsu PK, Dubeaux G, Takahashi Y, Schroeder JI. 2021. Signaling mechanisms in abscisic acid-mediated stomatal closure. The Plant Journal 105(2):307−21 doi: 10.1111/tpj.15067 |
[71] |
Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62(1):25−54 doi: 10.1111/jipb.12899 |
[72] |
Zhou JY, Li X, Zhao D, Deng-Wang MY, Dai CC. 2016. Reactive oxygen species and hormone signaling cascades in endophytic bacterium induced essential oil accumulation in Atractylodes lancea. Planta 244(3):699−712 doi: 10.1007/s00425-016-2536-0 |
[73] |
Fan H, Wu Q, Wang X, Wu L, Cai Y, et al. 2016. Molecular cloning and expression of 1-deoxy-d-xylulose-5-phosphate synthase and 1-deoxy-d-xylulose-5-phosphate reductoisomerase in Dendrobium officinale. Plant Cell, Tissue and Organ Culture (PCTOC) 125(2):381−85 doi: 10.1007/s11240-016-0945-1 |
[74] |
Ptak A, Morańska E, Warchoł M, Gurgul A, Skrzypek E, et al. 2022. Endophytic bacteria from in vitro culture of Leucojum aestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Scientific Reports 12:13700 doi: 10.1038/s41598-022-17992-5 |
[75] |
Liang Z, Ma Y, Xu T, Cui B, Liu Y, et al. 2013. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS One 8(9):e72806 doi: 10.1371/journal.pone.0072806 |
[76] |
Yang D, Sheng D, Duan Q, Liang X, Liang Z, et al. 2012. PEG and ABA trigger the burst of reactive oxygen species to increase tanshinone production in Salvia miltiorrhiza hairy roots. Journal of Plant Growth Regulation 31(4):579−87 doi: 10.1007/s00344-012-9268-6 |
[77] |
DeFalco TA, Zipfel C. 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell 81:3449−67 doi: 10.1016/j.molcel.2021.07.029 |
[78] |
Ngou BPM, Ding P, Jones JDG. 2022. Thirty years of resistance: Zig-zag through the plant immune system. The Plant Cell 34(5):1447−78 doi: 10.1093/plcell/koac041 |
[79] |
Narula K, Elagamey E, Abdellatef MAE, Sinha A, Ghosh S, et al. 2020. Chitosan-triggered immunity to Fusarium in chickpea is associated with changes in the plant extracellular matrix architecture, stomatal closure and remodeling of the plant metabolome and proteome. The Plant Journal 103(2):561−83 doi: 10.1111/tpj.14750 |
[80] |
Lu C, Jiang Y, Yue Y, Sui Y, Hao M, et al. 2023. Glutathione and neodiosmin feedback sustain plant immunity. Journal of Experimental Botany 74(3):976−90 doi: 10.1093/jxb/erac442 |
[81] |
Tang BZ, Liu CY, Li ZQ, Zhang XX, Zhou SQ, et al. 2021. Multilayer regulatory landscape during pattern‐triggered immunity in rice. Plant Biotechnology Journal 19(12):2629−45 doi: 10.1111/pbi.13688 |
[82] |
Pérez-Pérez J, Minguillón S, Kabbas-Piñango E, Payá C, Campos L, et al. 2024. Metabolic crosstalk between hydroxylated monoterpenes and salicylic acid in tomato defense response against bacteria. Plant Physiology 00:kiae148 doi: 10.1093/plphys/kiae148 |
[83] |
Wang Y, Gao Y, Zang P, Xu Y. 2020. Transcriptome analysis reveals underlying immune response mechanism of fungal (Penicillium oxalicum) disease in Gastrodia elata Bl. f. glauca S. chow (Orchidaceae). BMC Plant Biology 20:445 doi: 10.1186/s12870-020-02653-4 |
[84] |
Yang Q, Li J, Sun J, Cui X. 2022. Comparative transcriptomic and proteomic analyses to determine the lignin synthesis pathway involved in the fungal stress response in Panax notoginseng. Physiological and Molecular Plant Pathology 119:101814 doi: 10.1016/j.pmpp.2022.101814 |
[85] |
Gao J, Li T, Jiao L, Jiang C, Chen S, Huang L, et al. 2022. Metabolome and transcriptome analyses identify the plant immunity systems that facilitate sesquiterpene and lignan biosynthesis in Syringa pinnatifolia Hemsl. BMC Plant Biology 22:132 doi: 10.1186/s12870-022-03537-5 |
[86] |
Xie S, Jiang L, Wu Q, Wan W, Gan Y, et al. 2022. Maize root exudates recruit Bacillus amyloliquefaciens OR2-30 to inhibit Fusarium graminearum Infection. Phytopathology 112(9):1886−93 doi: 10.1094/PHYTO-01-22-0028-R |
[87] |
Zhou X, Zhang J, Khashi u Rahman M, Gao D, Wei Z, et al. 2023. Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant 16(5):849−64 doi: 10.1016/j.molp.2023.03.009 |
[88] |
Chen J, Wu XT, Xu YQ, Zhong Y, Li YX, et al. 2015. lobal transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao. BMC Genomics 16:S15 doi: 10.1186/1471-2164-16-S7-S15 |
[89] |
Elyasi R, Majdi M, Bahramnejad B, Mirzaghaderi G. 2016. Spatial modulation and abiotic elicitors responses of the biosynthesis related genes of mono/triterpenes in black cumin (Nigella sativa). Industrial Crops and Products 79:240−47 doi: 10.1016/j.indcrop.2015.11.005 |
[90] |
Huang AC, Jiang T, Liu YX, Bai YC, Reed J, et al. 2019. A specialized metabolic network selectively modulates Arabidopsis root microbiota. Science 364(6440):eaau6389 doi: 10.1126/science.aau6389 |
[91] |
Liang ML, Ye HJ, Shen Q, Jiang XY, Cui GB, et al. 2021. Tangeretin inhibits fungal ferroptosis to suppress rice blast. Journal of Integrative Plant Biology 63(12):2136−49 doi: 10.1111/jipb.13175 |
[92] |
Zhou Z, Feng J, Huo J, Qiu S, Zhang P, et al. 2024. Versatile CYP98A enzymes catalyse meta-hydroxylation reveals diversity of salvianolic acids biosynthesis. Plant Biotechnology Journal 22:1536−48 doi: 10.1111/pbi.14284 |
[93] |
Zhang G, Chen S, Zhou W, Meng J, Deng K, et al. 2018. Rapid qualitative and quantitative analyses of eighteen phenolic compounds from Lycium ruthenicum Murray by UPLC-Q-Orbitrap MS and their antioxidant activity. Food Chemistry 269:150−56 doi: 10.1016/j.foodchem.2018.06.132 |
[94] |
Zhang Y, Li T, Ye C, Lu R, Liu Y, et al. 2021. Leaching alleviates phenol-mediated root rot in Panax notoginseng by modifying the soil microbiota. Plant and Soil 468:491−507 doi: 10.1007/s11104-021-05136-z |
[95] |
Waterman PG. 1992. Roles for secondary metabolites in plants. Ciba Foundation Symposium 171:255−69 doi: 10.1002/9780470514344.ch15 |
[96] |
Ramakrishna A, Ravishankar GA. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6(11):1720−31 doi: 10.4161/psb.6.11.17613 |
[97] |
Wang X, Zhang J, Lu X, Bai Y, Wang G. 2023. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. Journal of Genetics and Genomics 51(5):467−78 doi: 10.1016/j.jgg.2023.10.004 |
[98] |
Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT. 2004. Nicotine's defensive function in nature. PLoS Biology 2(8):e217 doi: 10.1371/journal.pbio.0020217 |
[99] |
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. 2019. Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome 7(1):59 doi: 10.1186/s40168-019-0677-7 |
[100] |
Wei C, Liang J, Wang R, Chi L, Wang W, et al. 2024. Response of bacterial community metabolites to bacterial wilt caused by Ralstonia solanacearum: a multi-omics analysis. Frontiers in Plant Science 14:1339478 doi: 10.3389/fpls.2023.1339478 |
[101] |
Maggini V, Mengoni A, Bogani P, Firenzuoli F, Fani R. 2020. Promoting model systems of microbiota-medicinal plant interactions. Trends in Plant Science 25(3):223−25 doi: 10.1016/j.tplants.2019.12.013 |
[102] |
Huang W, Long C, Lam E. 2018. Roles of plant-associated microbiota in traditional herbal medicine. Trends in Plant Science 23(7):559−62 doi: 10.1016/j.tplants.2018.05.003 |
[103] |
Rustamova N, Bozorov K, Efferth T, Yili A. 2020. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochemistry Reviews 19:425−48 doi: 10.1007/s11101-020-09672-x |
[104] |
Ahmed R, Sonowal S, Chikkaputtaiah C, Basar E, Velmurugan N. 2023. Bifunctional and metabolically stable Himalayan endophytic bacterium Pantoea sp. enhances microalgal productivity. Biomass Conversion and Biorefinery doi: 10.1007/s13399-023-04123-x |
[105] |
Takino J, Kozaki T, Sato Y, Liu C, Ozaki T, et al. 2018. Unveiling biosynthesis of the phytohormone abscisic acid in fungi: unprecedented mechanism of core scaffold formation catalyzed by an unusual sesquiterpene synthase. Journal of the American Chemical Society 140(39):12392−95 doi: 10.1021/jacs.8b08925 |
[106] |
Jacoby RP, Koprivova A, Kopriva S. 2021. Pinpointing secondary metabolites that shape the composition and function of the plant microbiome. Journal of Experimental Botany 72(1):57−69 doi: 10.1093/jxb/eraa424 |