[1]

Zhang H, Zhang Z, Xiong Y, Shi J, Chen C, et al. 2021. Stearic acid desaturase gene negatively regulates the thermotolerance of Pinellia ternata by modifying the saturated levels of fatty acids. Industrial Crops and Products 166:113490

doi: 10.1016/j.indcrop.2021.113490
[2]

Bo C, Liu D, Yang J, Ji M, Li Z, et al. 2024. Comprehensive in silico characterization of NAC transcription factor family of Pinellia ternata and functional analysis of PtNAC66 under high-temperature tolerance in transgenic Arabidopsis thaliana. Plant Physiology and Biochemistry 208:108539

doi: 10.1016/j.plaphy.2024.108539
[3]

Yang JR, Cui WN, You Q, Liu MM, Liu X, et al. Transcriptome analysis reveals Long Non-Coding RNAs involved in shade-induced growth promotion in Pinellia ternata. Frontiers in Bioscience-Landmark 28(9): 202.

[4]

Fueki T, Tanaka K, Obara K, Kawahara R, Makino T, et al. 2020. The acrid raphides in tuberous root of Pinellia ternata have lipophilic character and are specifically denatured by ginger extract. Journal of Natural Medicine 74:722−31

doi: 10.1007/s11418-020-01425-6
[5]

Li Y, Li D, Chen J, Wang S. 2016. A polysaccharide from Pinellia ternata inhibits cell proliferation and metastasis in human cholangiocarcinoma cells by targeting of Cdc42 and 67 kDa Laminin Receptor (LR). International Journal of Biological Macromolecules 93:520−25

doi: 10.1016/j.ijbiomac.2016.08.069
[6]

Xu JY, Dai C, Shan JJ, Xie T, Xie HH, et al. 2018. Determination of the effect of Pinellia ternata (Thunb.) Breit. on nervous system development by proteomics. Journal of Ethnopharmacology 213:221−29

doi: 10.1016/j.jep.2017.11.014
[7]

Zhao JL, Li Q, Ding YY, Gu XY, Feng WW, et al. 2018. Sedative activity of the chemical constituents of Rhizoma pinelliae praeparatum. Chemistry of Natural Compounds 54:215−17

doi: 10.1007/s10600-018-2304-4
[8]

Mao R, He Z. 2020. Pinellia ternata (Thunb.) Breit: a review of its germplasm resources, genetic diversity and active components. Journal of Ethnopharmacology 263:113252

doi: 10.1016/j.jep.2020.113252
[9]

Ji X, Huang B, Wang G, Zhang C. 2014. The ethnobotanical, phytochemical and pharmacological profile of the genus Pinellia. Fitoterapia 93:1−17

doi: 10.1016/j.fitote.2013.12.010
[10]

Lee JY, Park NH, Lee W, Kim EH, Jin YH, et al. 2016. Comprehensive chemical profiling of Pinellia species tuber and processed Pinellia tuber by gas chromatography–mass spectrometry and liquid chromatography– atmospheric pressure chemical ionization–tandem mass spectrometry. Journal of Chromatography A 1471:164−77

doi: 10.1016/j.chroma.2016.10.033
[11]

Tang D, Yan R, Sun Y, Kai G, Chen K, et al. 2020. Material basis, effect, and mechanism of ethanol extract of Pinellia ternata tubers on oxidative stress-induced cell senescence. Phytomedicine 77:153275

doi: 10.1016/j.phymed.2020.153275
[12]

Xue T, Xiong Y, Shi J, Chao Q, Zhu Y, et al. 2021. UHPLC-MS-based metabolomic approach for the quality evaluation of Pinellia ternata tubers grown in shaded environments. Journal of Natural Medicines 75:1050−57

doi: 10.1007/s11418-021-01550-w
[13]

Wu YY, Huang XX, Zhang MY, Zhou L, Li DQ, et al. 2015. Chemical constituents from the tubers of Pinellia ternata (Araceae) and their chemotaxonomic interest. Biochemical Systematics and Ecology 62:236−40

doi: 10.1016/j.bse.2015.09.002
[14]

Duan Y, Zhang H, Meng X, Huang M, Zhang Z, et al. 2019. Accumulation of salicylic acid-elicited alkaloid compounds in in vitro cultured Pinellia ternata microtubers and expression profiling of genes associated with benzoic acid-derived alkaloid biosynthesis. Plant Cell, Tissure and Organ Culture 139:317−25

doi: 10.1007/s11240-019-01685-5
[15]

Liu YH, Liang ZS, Chen B, Yang DF, Liu JL. 2010. Elicitation of alkaloids in in vitro PLB (protocorm-like body) cultures of Pinellia ternata. Enzyme and Microbial Technology 46:28−31

doi: 10.1016/j.enzmictec.2009.08.005
[16]

Moustafa AA, Hegazy MA, Mohamed D, Ali O. 2018. Novel approach for the simultaneous determination of carbinoxamine maleate, pholcodine, and ephedrine hydrochloride without interference from coloring matter in an antitussive preparation using smart spectrophotometric methods. Journal of Aoac International 101(2):414−26

doi: 10.5740/jaoacint.17-0078
[17]

Morris JS, Groves RA, Hagel JM, Facchini PJ. 2018. An N-methyltransferase from Ephedra sinica catalyzing the formation of ephedrine and pseudoephedrine enables microbial phenylalkylamine production. Journal of Biological Chemistry 293:13364−76

doi: 10.1074/jbc.RA118.004067
[18]

Xu WF, Zhang BG, Li M, Liu GH. 2007. Determination of ephedrine in rhizoma Pinelliae, rhizoma Typhonii flagelliformis and their processed products by HPLC. Lishizhen Medicine and Materia Medica Research 18(4):884−85

doi: 10.3969/j.issn.1008-0805.2007.04.061
[19]

Wen Q, Zhang Y, Zhang J, Zhao Z. 2016. Simultaneous determination of 6 organic acids, 3 nucleosides, and ephedrine in Pinellia ternata by HPLC. Journal of Chinese Pharmaceutical Sciences 25(12):906−13

doi: 10.5246/jcps.2016.12.102
[20]

Zhang GH, Jiang NH, Song WL, Ma CH, Yang SC, et al. 2016. De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine. Frontiers in Plant Science 7:1209

doi: 10.3389/fpls.2016.01209
[21]

National Pharmacopoeia Committee. 2020. Pharmacopoeia of the People's Republic of China. Beijing: China Medical Science and Technology Press.

[22]

Wu H, Li W, Han H, Ji R, Ye D. 1999. Studies on stimulating components of raw Pinellia ternata (Thunb.) (Banxia). China Journal of Chinese Materia Medica 24:725−30

doi: 10.3321/j.issn:1001-5302.1999.12.007
[23]

Zhong LY, Wu H, Zhang KW, Wang QR. 2006. Study on irritation of calcium oxalate crystal in raw Pinellia ternata. China Journal of Chinese Materia Medica 31:1706−10

doi: 10.3321/j.issn:1001-5302.2006.20.016
[24]

Ge XY, Wu H. 2010. Analysis of the composition of poisonous raphides in Araceae plant. Chinese Journal of Pharmaceutical Analysis 30(2):190−93

doi: 10.16155/j.0254-1793.2010.02.007
[25]

Smith KT, Shortle WC, Connolly JH, Minocha R, Jellison J. 2009. Calcium fertilization increases the concentration of calcium in sapwood and calcium oxalate in foliage of red spruce. Environmental and Experimental Botany 67:277−83

doi: 10.1016/j.envexpbot.2009.07.007
[26]

Paull ER, Tang CS, Gross K, Uruu G. 1999. The nature of the taro acridity factor. Postharvest Biology and Technology 16(1):71−78

doi: 10.1016/S0925-5214(98)00099-4
[27]

Su T, Zhang WW, Zhang YM, Cheng BCY, Fu XQ, et al. 2016. Standardization of the manufacturing procedure for Pinelliae Rhizoma praeparatum cum zingibere et alumine. Journal of Ethnopharmacology 193:663−69

doi: 10.1016/j.jep.2016.09.038
[28]

Zhai XY, Zhang L, Li BT, Feng YL, Xu GL, et al. 2019. Discrimination of toxic ingredient between raw and processed Pinellia ternata by UPLC/Q-TOF-MS/MS with principal component analysis and t-test. Chinese Herbal Medicines 11:200−8

doi: 10.1016/j.chmed.2019.03.007
[29]

An D, Zhou Y, Li C, Xiao Q, Wang T, et al. 2019. Plant evolution and environmental adaptation unveiled by long-read whole-genome sequencing of Spirodela. Proceedings of the National Academy of Sciences of the United States of America 116:18893−99

doi: 10.1073/pnas.1910401116
[30]

Yin J, Jiang L, Wang L, Han X, Guo W, et al. 2021. A high-quality genome of taro (Colocasia esculenta (L.) Schott), one of the world's oldest crops. Molecular Ecology Resources 21:68−77

doi: 10.1111/1755-0998.13239
[31]

Qian Z, Ding J, Li Z, Chen J. 2022. The high-quality Pinellia pedatisecta genome reveals a key role of tandem duplication in the expansion of its agglutinin genes. Horticulture Research 10(3):uhac289

doi: 10.1093/hr/uhac289
[32]

Qian Z, Li Y, Yang J, Shi T, Li Z, et al. 2022. The chromosome-level genome of a free-floating aquatic weed Pistia stratiotes provides insights into its rapid invasion. Molecular Ecology Resources 22(7):2732−43

doi: 10.1111/1755-0998.13653
[33]

Gao Y, Zhang Y, Feng C, Chu H, Feng C, et al. 2022. A chromosome-level genome assembly of Amorphophallus konjac provides insights into konjac glucomannan biosynthesis. Computational and Structural Biotechnology Journal 20:1002−11

doi: 10.1016/j.csbj.2022.02.009
[34]

Lu J, Liu JN, Sarsaiya S, Duns GJ, Han J, et al. 2020. Phenotypic and transcriptomic analysis of two Pinellia ternata varieties T2 line and T2Plus line. Scientific Reports 10:4614

doi: 10.1038/s41598-020-61512-2
[35]

Ranallo-Benavidez TR, Jaron KS, Schatz MC. 2020. GenomeScope 2.0 and smudgeplot for reference-free profiling of polyploid genomes. Nature Communications 11:1432

doi: 10.1038/s41467-020-14998-3
[36]

Cheng H, Concepcion GT, Feng X, Zhang H, Li H. 2021. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nature Methods 18:170−75

doi: 10.1038/s41592-020-01056-5
[37]

Hu J, Fan J, Sun Z, Liu S. 2020. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36:2253−55

doi: 10.1093/bioinformatics/btz891
[38]

Zhang X, Zhang S, Zhao Q, Ming R, Tang H. 2019. Assembly of allele-aware, chromosomal-scale autopolyploid genomes based on Hi-C data. Nature Plants 5:833−45

doi: 10.1038/s41477-019-0487-8
[39]

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Molecular Biology and Evolution 38:4647−54

doi: 10.1093/molbev/msab199
[40]

Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index (LAI). Nucleic Acids Research 46(21):e126

doi: 10.1093/nar/gky730
[41]

Tarailo-Graovac M, Chen N. 2009. Using RepeatMasker to identify repetitive elements in genomic sequences. Current Protocols Bioinformatics 25:4.10.1−4.10.14

doi: 10.1002/0471250953.bi0410s25
[42]

Hoede C, Arnoux S, Moisset M, Chaumier T, Inizan O, et al. 2014. PASTEC: An automatic transposable element classification tool. Plos ONE 9:e91929

doi: 10.1371/journal.pone.0091929
[43]

Xu Z, Wang H. 2007. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Research 35:W265−W268

doi: 10.1093/nar/gkm286
[44]

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biology 20:238

doi: 10.1186/s13059-019-1832-y
[45]

Han MV, Thomas GWC, Lugo-Martinez J, Hahn MW. 2013. Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular Biology and Evolution 30:1987−97

doi: 10.1093/molbev/mst100
[46]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[47]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13

doi: 10.1093/bioinformatics/btu033
[48]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24(8):1586−91

doi: 10.1093/molbev/msm088
[49]

Zwaenepoel A, Van de Peer Y. 2019. wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35:2153−55

doi: 10.1093/bioinformatics/bty915
[50]

Tang H, Krishnakumar V, Li J. 2015. JCVI: JCVI utility libraries (v0.5.7). Zenodo. https://doi.org/10.5281/zenodo.31631

[51]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[52]

Kovaka S, Zimin AV, Pertea GM, Razaghi R, Salzberg SL, et al. 2019. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biology 20:278

doi: 10.1186/s13059-019-1910-1
[53]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550

doi: 10.1186/s13059-014-0550-8
[54]

Zhang J. 2022. ClusterGVis: One-step to cluster and visualize gene expression Matrix. https://github.com/junjunlab/ClusterGVis.

[55]

Zheng Y, Jiao C, Sun H, Rosli HG, Pombo MA, et al. 2016. iTAK: a program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9:1667−70

doi: 10.1016/j.molp.2016.09.014
[56]

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, et al. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421

doi: 10.1186/1471-2105-10-421
[57]

Smirnoff N. 2018. Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biology and Medicine 122:116−29

doi: 10.1016/j.freeradbiomed.2018.03.033
[58]

Howles PA, Sewalt VJH, Paiva NL, Elkind Y, Bate NJ, et al. 1996. Overexpression of L-phenylalanine ammonia-lyase in transgenic tobacco plants reveals control points for flux into phenylpropanoid biosynthesis. Plant Physiology 112(4):1617−24

doi: 10.1104/pp.112.4.1617
[59]

Qualley AV, Widhalm JR, Adebesin F, Kish CM, Dudareva N. 2012. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Proceedings of the National Academy of Sciences of the United States of America 109(40):16383−88

doi: 10.1073/pnas.1211001109
[60]

Lee S, Kaminaga Y, Cooper B, Pichersky E, Chapple C. 2012. Benzoylation and sinapoylation of glucosinolate R-groups in Arabidopsis. The Plant Journal 72:411−22

doi: 10.1111/j.1365-313X.2012.05096.x
[61]

Klempien A, Kaminaga Y, Qualley A, Nagegowda DA, Widhalm JR, et al. 2012. Contribution of CoA ligases to benzenoid biosynthesis in Petunia flowers. The Plant Cell 24:2015−30

doi: 10.1105/tpc.112.097519
[62]

Teotia D, Gaid M, Saini SS, Verma A, Yennamalli RM, et al. 2019. Cinnamate-CoA ligase is involved in biosynthesis of benzoate-derived biphenyl phytoalexin in Malus × domestica 'Golden Delicious' cell cultures. The Plant Journal 100:1176−92

doi: 10.1111/tpj.14506
[63]

Bussell JD, Reichelt M, Wiszniewski AAG, Gershenzon J, Smith SM. 2014. Peroxisomal ATP-binding cassette transporter COMATOSE and the multifunctional protein ABNORMAL INFLORESCENCE MERISTEM are required for the production of benzoylated metabolites in Arabidopsis seeds. Plant Physiology 164:48−54

doi: 10.1104/pp.113.229807
[64]

Van Moerkercke A, Schauvinhold I, Pichersky E, Haring MA, Schuurink RC. 2009. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. The Plant Journal 60:292−302

doi: 10.1111/j.1365-313X.2009.03953.x
[65]

Vogel C, Widmann M, Pohl M, Pleiss J. 2012. A standard numbering scheme for thiamine diphosphate-dependent decarboxylases. BMC Biochemistry 13:24

doi: 10.1186/1471-2091-13-24
[66]

Gallage NJ, Hansen EH, Kannangara R, Olsen CE, Motawia MS, et al. 2014. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme. Nature Communications 5:4037

doi: 10.1038/ncomms5037
[67]

Liu F, Schnable PS. 2002. Functional specialization of maize mitochondrial aldehyde dehydrogenases. Plant Physiology 130:1657−74

doi: 10.1104/pp.012336
[68]

Long MC, Nagegowda DA, Kaminaga Y, Ho KK, Kish CM, et al. 2009. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. The Plant Journal 59:256−65

doi: 10.1111/j.1365-313X.2009.03864.x
[69]

Ibdah M, Pichersky E. 2009. Arabidopsis Chy1 null mutants are deficient in benzoic acid−containing glucosinolates in the seeds. Plant Biology 11:574−81

doi: 10.1111/j.1438-8677.2008.00160.x
[70]

Alvarez MA. 2014. Plant biotechnology for health: from secondary metabolites to molecular farming, vol. 8. Cham: Springer International Publishing. p. 39–48. https://doi.org/10.1007/978-3-319-05771-2

[71]

Groves RA, Hagel JM, Zhang Y, Kilpatrick K, Levy A, et al. 2015. Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis. Plos One 10:e0119701

doi: 10.1371/journal.pone.0119701
[72]

Chang CC, Beevers H. 1968. Biogenesis of oxalate in plant tissues. Plant Physiology 43:1821−28

doi: 10.1104/pp.43.11.1821
[73]

Yu L, Jiang J, Zhang C, Jiang L, Ye N, et al. 2010. Glyoxylate rather than ascorbate is an efficient precursor for oxalate biosynthesis in rice. Journal of Experimental Botany 61:1625−34

doi: 10.1093/jxb/erq028
[74]

Cai X, Ge C, Wang X, Wang S, Wang Q. 2018. Expression analysis of oxalate metabolic pathway genes reveals oxalate regulation patterns in spinach. Molecules 23(6):1286

doi: 10.3390/molecules23061286
[75]

Truffault V, Fry SC, Stevens RG, Gautier H. 2017. Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate. Plant Journal 89:996−1008

doi: 10.1111/tpj.13439
[76]

Parsons HT, Fry SC. 2012. Oxidation of dehydroascorbic acid and 2, 3-diketogulonate under plant apoplastic conditions. Phytochemistry 75:41−49

doi: 10.1016/j.phytochem.2011.12.005
[77]

Yao J, Pang Y, Qi H, Wan B, Zhao X, et al. 2003. Transgenic tobacco expressing Pinellia ternata agglutinin confers enhanced resistance to aphids. Transgenic Research 12:715−22

doi: 10.1023/B:TRAG.0000005146.05655.7d
[78]

Jin S, Zhang X, Daniell H. 2012. Pinellia ternata agglutinin expression in chloroplasts confers broad spectrum resistance against aphid, whitefly, lepidopteran insects, bacterial and viral pathogens. Plant Biotechnology Journal 10(3):313−27

doi: 10.1111/j.1467-7652.2011.00663.x
[79]

Umer N, Naqvi RZ, Rauf I, Anjum N, Asif M. 2020. Expression of Pinellia ternata leaf agglutinin under rolc promoter confers resistance against a phytophagous sap sucking aphid, Myzus persicae. Electronic Journal of Biotechnology 47:72−82

doi: 10.1016/j.ejbt.2020.07.004