[1]

Guo YT. 1993. A brief discussion on the historical development of ratooning rice in China. Agricultural History of China 12(4):1−6

[2]

Shi NP, 1990. Growth characteristics and high-yielding cultivation techniques of ratooning rice. Fujian, China: Fujian Science and Technology Press. pp. 1−12.

[3]

Xu L, Zhan X, Yu T, Nie L, Huang J, et al. 2018. Yield performance of direct-seeded, double-season rice using varieties with short growth durations in central China. Field Crops Research 227:49−55

doi: 10.1016/j.fcr.2018.08.002
[4]

Chen H, Yao F, Yang Y, Zhang Z, Fang C, et al. 2023. Progress and challenges of rice ratooning technology in Fujian Province, China. Crop and Environment 2:121−25

doi: 10.1016/j.crope.2023.05.001
[5]

Peng S, Zheng C, Yu X. 2023. Progress and challenges of rice ratooning technology in China. Crop and Environment 2(1):5−11

doi: 10.1016/j.crope.2023.02.005
[6]

Jiang PY. 1996. Growth characteristics and high-yielding cultivation techniques of ratooning rice. China Rice (6):30−33

[7]

Zhang G, Tu N. 2001. Research status and prospect of ratooning rice. Crop Research 15(3):64−69

doi: 10.3969/j.issn.1001-5280.2001.03.020
[8]

Lin W. 2019. Developmental status and problems of rice ratooning. Journal of Integrative Agriculture 18(1):246−47

doi: 10.1016/S2095-3119(19)62568-2
[9]

Peng SB. 2014. Reflection on China's rice production strategies during the transition period. Scientia Sinica Vitae 44(8):845−50

doi: 10.1360/052014-98
[10]

Wang Y, Zheng C, Xiao S, Sun Y, Huang J, et al. 2019. Agronomic responses of ratoon rice to nitrogen management in central China. Field Crops Research 241:107569

doi: 10.1016/j.fcr.2019.107569
[11]

Wang Y, Li Y. 2023. Mapping the ratoon rice suitability region in China using random forest and recursive feature elimination modeling. Field Crops Research 301:109016

doi: 10.1016/j.fcr.2023.109016
[12]

Wang H, Cui K, Huang J. 2023. Progress and challenges of rice ratooning technology in Hubei Province, China. Crop and Environment 2:12−16

doi: 10.1016/j.crope.2023.02.002
[13]

Xiong L, Liu Z, Wang P, Lin X, Wang G, et al. 2023. Progress and challenges of rice ratooning technology in Jiangxi Province, China. Crop and Environment 2:87−91

doi: 10.1016/j.crope.2023.04.005
[14]

Jiang P, Zhang L, Chen C, Zhou X, Liu M, et al. 2023. Progress and challenges of rice ratooning technology in Sichuan Province, China. Crop and Environment 2:111−20

doi: 10.1016/j.crope.2023.04.006
[15]

Xi M, Xu Y, Li Z, Hu R, Cheng T, et al. 2023. Progress and challenges of rice ratooning technology in Anhui Province, China. Crop and Environment 2:81−86

doi: 10.1016/j.crope.2023.04.003
[16]

Wang W, Zheng H, Chen Y, Zou D, Luo Y, et al. 2023. Progress and challenges of rice ratooning technology in Hunan Province, China. Crop and Environment 2:101−10

doi: 10.1016/j.crope.2023.05.002
[17]

Lin W, Chen H, Zhang Z, Xu Q, Tu N, et al. 2015. Research and prospect on physio-ecological properties of ratoon rice yield formation and its key cultivation technology. Chinese Journal of Eco-Agriculture 23(4):392−401

doi: 10.13930/j.cnki.cjea.150246
[18]

Li D, Tang G, Zhu R, Qin X, Tang J. 2012. Exploration on ratooning inheritance and its breeding technology of cultivated rice. Journal of Southern Agriculture 43(9):1273−76

doi: 10.3969/j:issn.2095-1191.2012.09.1273
[19]

Yao Y, Xiang D, Wu N, Wang Y, Chen Y, et al. 2023. Control of rice ratooning ability by a nucleoredoxin that inhibits histidine kinase dimerization to attenuate cytokinin signaling in axillary bud growth. Molecular plant 16:1911−26

doi: 10.1016/j.molp.2023.10.009
[20]

Zheng J, Li Y, Lin W. 2004. Identification of QTL for ratooning ability and grain yield traits in ratoon rice based on SSR marker. Mollecular Plant Breeding 2(3):342−47

doi: 10.3969/j.issn.1672-416X.2004.03.007
[21]

Guo CL, Lin WW, Gao WJ, Lan CJ, Xu HL, et al. 2023. Physiological properties of perennial rice regenerating cultivation in two years with four harvests. Plants 12:3910

doi: 10.3390/plants12223910
[22]

Zheng J, Shen R, Li X, Li Y, Wang H, et al. 2016. Effects of machine-cut stubble height on morphological development and grain yield of subsequent ratoon rice crop. Fujian Journal of Agricultural Sciences 31(8):791−96

doi: 10.19303/j.issn.1008-0384.2016.08.001
[23]

Tanaka N, Yoshida S, Takagi H, Terauchi R, Shimizu A, et al. 2019. Evidence for rice Heading date 16 contribution to yield increase under low-nutrient conditions. Soil Science and Plant Nutrition 65(6):589−97

doi: 10.1080/00380768.2019.1647081
[24]

Zou J, Pang Z, Li Z, Guo C, Lin H, et al. 2024. The underlying mechanism of variety-water-nitrogen-stubble damage interaction on yield formation of ratoon rice with low stubble height under mechanized harvesting. Journal of Integrative Agriculture 23:806−23

doi: 10.1016/j.jia.2023.05.038
[25]

Cho LH, Pasriga R, Yoon J, Jeon JS, An G. 2018. Roles of Sugars in Controlling Flowering Time. Journal of Plant Biology 61(3):121−30

doi: 10.1007/s12374-018-0081-z
[26]

Ye T, Li Y, Zhang J, Hou W, Zhou W, et al. 2019. Nitrogen, phosphorus, and potassium fertilization affects the flowering time of rice (Oryza sativa L.). Global Ecology and Conservation 20:e00753

doi: 10.1016/j.gecco.2019.e00753
[27]

Zhang S, Zhang Y, Li K, Luo L, Xuan W, et al. 2020. Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Current Biology 31:671−83

doi: 10.1016/j.cub.2020.10.095
[28]

Lin M, Yang S, Chen H, Letuma P, Khan MU, et al. 2023. Optimally combined application of organic and chemical fertilizers increases grain yield and improves rhizosphere microecological properties in rice ratooning. Crop Science 63(2):764−83

doi: 10.1002/csc2.20891
[29]

Dong H, Chen Q, Wang W, Peng S, Huang J, et al. 2017. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crops Research 208:55−59

doi: 10.1016/j.fcr.2017.04.003
[30]

Chen Q, He A, Wang W, Peng S, Huang J, et al. 2018. Comparisons of regeneration rate and yields performance between inbred and hybrid rice cultivars in a direct seeding rice-ratoon rice system in central China. Field Crops Research 223:164−70

doi: 10.1016/j.fcr.2018.04.010
[31]

Huang JW, Wu JY, Chen HF, Zhang ZX, Fang CX, et al. 2022. Optimal management of nitrogen fertilizer in the main rice crop and its carrying-over effect on ratoon rice under mechanized cultivation in Southeast China. Journal of Integrative Agriculture 21(2):351−64

doi: 10.1016/s2095-3119(21)63668-7
[32]

Huang J, Pan Y, Chen H, Zhang Z, Fang C, et al. 2020. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system. Field Crops Research 258:107962

doi: 10.1016/j.fcr.2020.107962
[33]

Liang KJ, Wang XR, Lin WX, Chen ZX, Li YJ. 2002. Advancement in physioecological studies on yield formation in rice (Oryza sativa L.). Chinese Journal of Eco-Agriculture 10(3):59−61

[34]

Li Z, Li Z, Muhammad W, Lin M, Azeem S, et al. 2018. Proteomic analysis of positive influence of alternate wetting and moderate soil drying on the process of rice grain filling. Plant Growth Regulation 84(3):533−548

doi: 10.1007/s10725-017-0359-z
[35]

Su Z, Li Y, Guo H, Zhang H, Li GS, et al. 1993. Discussion on the relationship between the culm-sheath weight per shoot and yield in rice and its cultural approaches of high yield. Journal of Jiangsu Agricultural College 1993(1):1−10

doi: 10.16872/j.cnki.1671-4652.1993.01.001
[36]

Zhou W, Yi Z, Tu N, Li H. 2008. Correlation between the distribution of photosynthates of flag leaf at full heading stage of main crop and yield of polingenesis rice. Journal of Nuclear Agricultural Sciences 22(6):860−64

[37]

Wu D, Li Z, Guo C, Zou J, Pang Z, et al. 2023. Dry matter partitioning properties and mechanism of ratooning rice and main crop (late season) synchronized in rice heading time. Acta Agronomica Sinica 49(3):755−71

doi: 10.3724/SP.J.1006.2023.22016
[38]

Xie HA. 2010. Studies on high-yielding cultivation characteristics of super hybrid rice grown as ratoon rice. Hyrid Rice 25:17−26

doi: 10.16267/j.cnki.1005-3956.2010.s1.065
[39]

Yi Z, Zhou W, Tu N. 2009. Effects of stubble height of the main crop on source-sink characteristics and assimilates transportation in ratooning rice. Chinese Journal of Rice Science 23(5):509−16

doi: 10.3969/j.issn.1001-7216.2009.05.10
[40]

Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS. 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant physiology 135(3):1621−29

doi: 10.1104/pp.104.041038
[41]

Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. 2003. Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell and Environment 26(10):1621−31

doi: 10.1046/j.1365-3040.2003.01081.x
[42]

Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. 2001. Water deficit–induced senescence and its relationship to the remobilization of pre-stored carbon in wheat during grain filling. Agronomy Journal 93(1):196−206

doi: 10.2134/agronj2001.931196x
[43]

Yang JC, Zhang JH. 2006. Grain filling of cereals under soil drying. New Phytologist 169(2):223−36

doi: 10.1111/j.1469-8137.2005.01597.x
[44]

Yang JC, Zhang JH, Wang ZQ, Liu K, Wang P. 2006. Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene. Journal of Experimental Botany 57(1):149−60

doi: 10.1093/jxb/erj018
[45]

Wang ZQ, Xu YJ, Chen TT, Zhang H, Yang JC, et al. 2015. Abscisic acid and the key enzymes and genes in sucrose-tostarch conversion in rice spikelets in response to soil drying during grain filling. Planta 241(5):1091−107

doi: 10.1007/s00425-015-2245-0
[46]

Wang Q. 2019. Effects of high concentration CO2 on endogenous hormones and organic acids in rice seedlings. Thesis. Shenyang Normal University, Shenyang.

[47]

Deng XL. 2018. Physiological and biochemical mechanism of sucrose metabolism as affected by IAA in Cotton (G. hirsutum). Thesis. Zhejiang University, Zhenjiang.

[48]

Shamiul Islam M, Hasanuzzaman M, Rokonuzzaman M. 2008. Ratoon rice response to different fertilizer doses in irrigated condition. Agriculturae Conspectus Scientificus 73(4):197−202

[49]

Yi ZX, Tu NM, Chen PP. 2005. Effects of stubble height on roots of ratooning rice. Hybrid Rice 20(1):56−59

doi: 10.3969/j.issn.1005-3956.2005.01.020
[50]

Lin W, Li Y, Jiang Z, Zheng J. 2001. Morphologic and functional difference of root systems among ratooning rice varieties and its correlation with yield. Fujian Journal of Agricultural Sciences 16(1):1−4

doi: 10.19303/j.issn.1008-0384.2001.01.001
[51]

Zhang L, Guo X, Liu M, Xiong H, Zhu Y, et al. 2010. Factors for promoting ratooning bud growth of mid-season hybrid rice. Southwest China Journal of Agricultural Sciences 23(2):309−14

doi: 10.16213/j.cnki.scjas.2010.02.016
[52]

Chaparro JM, Badri DV, Vivanco JM. 2014. Rhizosphere microbiome assemblage is affected by plant development. The ISME journal 8(4):790−803

doi: 10.1038/ismej.2013.196
[53]

Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK, et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proceedings of the National Academy of Sciences of the United States of America 112(8):E911−E920

doi: 10.1073/pnas.1414592112
[54]

Zhang J, Zhang N, Liu Y, Zhang X, Hu B, et al. 2018. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Science China Life Sciences 61(6):613−21

doi: 10.1007/s11427-018-9284-4
[55]

Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K. 2014. Changes in the bacterial community of soybean rhizospheres during growth in the field. Plos ONE 9(6):e100709

doi: 10.1371/journal.pone.0100709
[56]

Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. 2013. Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology 64(1):807−38

doi: 10.1146/annurev-arplant-050312-120106
[57]

Shi S, Nuccio E, Herman DJ, Rijkers R, Estera K, et al. 2015. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. MBio 6(4):e00746

doi: 10.1128/mBio.00746-15
[58]

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57:233−66

doi: 10.1146/annurev.arplant.57.032905.105159
[59]

Lin MH, 2023. The cultivation regulation and its underlying mechanism of high yield and mitigated emissions from low cut stubble rice ratooning. PhD thesis. Fujian Agricultural and University, Fujian.

[60]

Zhang XX, Zhou S, Sun HF, Zhang JN, Wang C. 2020. Impacts of alternate wetting and drying irrigation on rice production and the mitigation of greenhouse gas emission in paddy fields. Chinese Journal of Ecology 39(11):3873−80

doi: 10.13292/j.1000-4890.202011.001
[61]

Lin Z, Li Z, Weng P, Wu D, Zou J, et al. 2022. Field greenhouse gas emission characteristics and carbon footprint of ratoon rice. Chinese Journal of Applied Ecology 33(5):1340−51

doi: 10.13287/j.1001-9332.202205.013
[62]

Lin F, Huang J, Lin S, Letuma P, Xie D, et al. 2023. Physiological and transcriptomic analysis reveal the regulatory mechanism underlying grain quality improvement induced by rice ratooning. Journal of the Science of Food and Agriculture 103:3569−78

doi: 10.1002/jsfa.12278
[63]

Lin F, Rensing C, Pang Z, Zou J, Lin S, et al. 2022. Metabolomic analysis reveals differential metabolites and pathways involved in grain chalkiness improvement under rice ratooning. Field Crops Research 283:108521

doi: 10.1016/j.fcr.2022.108521