[1] |
Zhu M, Shi T, Chen Y, Luo S, Leng T, et al. 2019. Prediction of fatty acid composition in camellia oil by 1H NMR combined with PLS regression. Food Chemistry 279:339−46 doi: 10.1016/j.foodchem.2018.12.025 |
[2] |
Liu L, Feng S, Chen T, Zhou L, Yuan M, et al. 2021. Quality assessment of Camellia oleifera oil cultivated in Southwest China. Separations 8(9):144 doi: 10.3390/separations8090144 |
[3] |
Zhang L, Wang L. 2021. Prospect and development status of oil-tea Camellia industry in China. China Oils Fats 46:6−9+27 doi: 10.19902/j.cnki.zgyz.1003-7969.2021.06.002 |
[4] |
Yu J, Yan H, Wu Y, Wang Y, Xia P. 2022. Quality evaluation of the oil of Camellia spp. Foods 11:2221 doi: 10.3390/foods11152221 |
[5] |
Chen Y. 2008. Oil tea camellia superior germplasm resources. China Forestry Publishing House: Beijing, China |
[6] |
Wang X, Huang L, Chen L, Yang W, Li Y, Ma Z. 2010. The investigation to the variety resources of oil tea plant in Wuzhishan of Hainan. Journal of Hunan Agricultural University (Natural Sciences) 36:1−4 doi: 10.3724/SP.J.1238.2010.00001 |
[7] |
Li S, Liu SL, Pei SY, Ning MM, Tang SQ. 2020. Genetic diversity and population structure of Camellia huana (Theaceae), a limestone species with narrow geographic range, based on chloroplast DNA sequence and microsatellite markers. Plant Diversity 42:343−50 doi: 10.1016/j.pld.2020.06.003 |
[8] |
Shi SH, Tang SQ, Cheng YQ, Qu LH, Hung-ta C. 1998. Phylogenetic relationships among eleven yellow-flowered camellia species based on random amplified polymorphic DNA. Journal of Systematics and Evolution 36:317 |
[9] |
Vijayan K, Zhang WJ, Tsou CH. 2009. Molecular taxonomy of Camellia (Theaceae) inferred from nrITS sequences. American Journal of Botany 96:1348−60 doi: 10.3732/ajb.0800205 |
[10] |
Yang H, Wei CL, Liu HW, Wu JL, Li ZG, et al. 2016. Genetic divergence between Camellia sinensis and its wild relatives revealed via genome-wide SNPs from RAD sequencing. PLoS One 11:e0151424 doi: 10.1371/journal.pone.0151424 |
[11] |
Zhao DW, Yang JB, Yang SX, Kato K, Luo JP. 2014. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biology 14:14 doi: 10.1186/1471-2229-14-14 |
[12] |
Qin S, Rong J, Zhang W, Chen J. 2018. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin. Biodiversity Science 26:384−95 doi: 10.17520/biods.2017254 |
[13] |
Chang H, Ren S. 1998. Flora Reipublicae Popularis Sinicae, Tomus 49 (3), Theaceae (1): Theoideae. Beijing: Science Press. |
[14] |
Tianlu M. 2000. Monograph of the Genus Camellia. Kunming: Yunnan Science and Technology Press. |
[15] |
Ming TL, Bartholomew B. 2007. Camellia. In Flora of China, eds. Wu CY, Raven PH, Hong DY. vol. 12. Beijing & St. Louispp: Science Press & Missouri Botanical garden Press. pp. 367–412. |
[16] |
Yao X, Huang Y. 2013. The resource and genetic diversity of Camellia meiocarpa Hu. Beijing, China: Science Press. |
[17] |
Fang Z, Li G, Gu Y, Wen C, Ye H, et al. 2022. Flavour analysis of different varieties of camellia seed oil and the effect of the refining process on flavour substances. LWT 170:114040 doi: 10.1016/j.lwt.2022.114040 |
[18] |
Jheng CF, Chen TC, Lin JY, Chen TC, Wu WL, et al. 2012. The comparative chloroplast genomic analysis of photosynthetic orchids and developing DNA markers to distinguish Phalaenopsis orchids. Plant Science 190:62−73 doi: 10.1016/j.plantsci.2012.04.001 |
[19] |
Li E, Liu K, Deng R, Gao Y, Liu X, et al. 2023. Insights into the phylogeny and chloroplast genome evolution of Eriocaulon (Eriocaulaceae). BMC Plant Biology 23:32 doi: 10.1186/s12870-023-04034-z |
[20] |
Jiang D, Cai X, Gong M, Xia M, Xing H, et al. 2023. Complete chloroplast genomes provide insights into evolution and phylogeny of Zingiber (Zingiberaceae). BMC genomics 24:30 doi: 10.1186/s12864-023-09115-9 |
[21] |
Glass SE, McCourt RM, Gottschalk SD, Lewis LA, Karol KG. 2023. Chloroplast genome evolution and phylogeny of the early-diverging charophycean green algae with a focus on the Klebsormidiophyceae and Streptofilum. Journal of Phycology 59:1133−46 doi: 10.1111/jpy.13359 |
[22] |
Wu B, Zhu J, Ma X, Jia J, Luo D, et al. 2023. Comparative analysis of switchgrass chloroplast genomes provides insights into identification, phylogenetic relationships and evolution of different ecotypes. Industrial Crops and Products 205:117570 doi: 10.1016/j.indcrop.2023.117570 |
[23] |
Cao Z, Yang L, Xin Y, Xu W, Li Q, et al. 2023. Comparative and phylogenetic analysis of complete chloroplast genomes from seven Neocinnamomum taxa (Lauraceae). Frontiers in Plant Science 14:1205051 doi: 10.3389/fpls.2023.1205051 |
[24] |
Chen J, Wang F, Zhao Z, Li M, Liu Z, et al. 2023. Complete chloroplast genomes and comparative analyses of three Paraphalaenopsis (Aeridinae, Orchidaceae) species. International Journal of Molecular Sciences 24:11167 doi: 10.3390/ijms241311167 |
[25] |
Xu XM, Liu DH, Zhu SX, Wang ZL, Wei Z, et al. 2023. Phylogeny of Trigonotis in China—with a special reference to its nutlet morphology and plastid genome. Plant Diversity 45:409−21 doi: 10.1016/j.pld.2023.03.004 |
[26] |
Liang H, Zhang Y, Deng J, Gao G, Ding C, et al. 2020. The complete chloroplast genome sequences of 14 Curcuma species: insights into genome evolution and phylogenetic relationships within zingiberales. Frontiers in Genetics 11:802 doi: 10.3389/fgene.2020.00802 |
[27] |
Chen Z, Liu Q, Xiao Y, Zhou G, Yu P, et al. 2023. Complete chloroplast genome sequence of Camellia sinensis: genome structure, adaptive evolution, and phylogenetic relationships. Journal of Applied Genetics 64:419−29 doi: 10.1007/s13353-023-00767-7 |
[28] |
Qiao D, Yang C, Guo Y. 2023. The complete chloroplast genome sequence of Camellia sinensis var sinensis cultivar 'FuDingDaBaiCha'. Mitochondrial DNA Part B 8:100−4 doi: 10.1080/23802359.2022.2161327 |
[29] |
Ran Z, Li Z, Xiao X, An M, Yan C. 2024. Complete chloroplast genomes of 13 species of sect. Tuberculata Chang (Camellia L.): Genomic features, comparative analysis, and phylogenetic relationships. BMC Genomics 25:108 doi: 10.1186/s12864-024-09982-w |
[30] |
Luo H, Liao B, Li Y, Huang R, Zhang K, et al. 2023. Characterization of the complete chloroplast genome sequences and phylogenetic relationships of four oil-seed Camellia spp. and related taxa. bioRxiv In Press:2023.10.03.560681 doi: 10.1101/2023.10.03.560681 |
[31] |
Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26 doi: 10.1093/nar/8.19.4321 |
[32] |
Patel RK, Jain M. 2012. NGS QC Toolkit: a toolkit for quality control of next generation sequencing data. PLoS One 7:e30619 doi: 10.1371/journal.pone.0030619 |
[33] |
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19:455−77 doi: 10.1089/cmb.2012.0021 |
[34] |
Shi L, Chen H, Jiang M, Wang L, Wu X, et al. 2019. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Research 47:W65−W73 doi: 10.1093/nar/gkz345 |
[35] |
Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451−52 doi: 10.1093/bioinformatics/btp187 |
[36] |
Katoh K, Misawa K, Kuma KI, Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30:3059−66 doi: 10.1093/nar/gkf436 |
[37] |
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, et al. 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic acids research 29:4633−42 doi: 10.1093/nar/29.22.4633 |
[38] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583−85 doi: 10.1093/bioinformatics/btx198 |
[39] |
Katoh K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9:286−98 doi: 10.1093/bib/bbn013 |
[40] |
Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587−89 doi: 10.1038/nmeth.4285 |
[41] |
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312−13 doi: 10.1093/bioinformatics/btu033 |
[42] |
Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74 doi: 10.1093/molbev/msw054 |
[43] |
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology 61:539−42 doi: 10.1093/sysbio/sys029 |
[44] |
Wei SJ, Liufu YQ, Zheng HW, Chen HL, Lai YC, et al. 2023. Using phylogenomics to untangle the taxonomic incongruence of yellow-flowered Camellia species (Theaceae) in China. Journal of Systematics and Evolution 61:748−63 doi: 10.1111/jse.12915 |
[45] |
Wang Y, Huang J, Xie N, Zhang D, Tong W, et al. 2023. The complete chloroplast genome sequence of Camellia atrothea (Ericales: Theaceae). Mitochondrial DNA Part B 8:536−40 doi: 10.1080/23802359.2023.2204972 |
[46] |
Kim KJ, Lee HL. 2005. Widespread occurrence of small inversions in the chloroplast genomes of land plants. Molecules & Cells 19:104−13 doi: 10.1016/s1016-8478(23)13143-8 |
[47] |
Wang RJ, Cheng CL, Chang CC, Wu CL, Su TM, et al. 2008. Dynamics and evolution of the inverted repeat-large single copy junctions in the chloroplast genomes of monocots. BMC Evolutionary Biology 8:36 doi: 10.1186/1471-2148-8-36 |
[48] |
Huang Y. 2013. Population genetic structure and interspecific introgressive hybridization between Camellia meiocarpa and C. oleifera. Chinese Journal of Applied Ecology 24:2345−52 |
[49] |
Chen M, Zhang Y, Du Z, Kong X, Zhu X. 2023. Integrative metabolic and transcriptomic profiling in Camellia oleifera and Camellia meiocarpa uncover potential mechanisms that govern triacylglycerol degradation during seed desiccation. Plants 12:2591 doi: 10.3390/plants12142591 |
[50] |
Chen J, Guo Y, Hu X, Zhou K. 2022. Comparison of the chloroplast genome sequences of 13 oil-tea camellia samples and identification of an undetermined oil-tea camellia species from Hainan province. Frontiers in Plant Science 12:798581 doi: 10.3389/fpls.2021.798581 |
[51] |
Lin P, Yin H, Wang K, Gao H, Liu L, Yao X. 2022. Comparative genomic analysis uncovers the chloroplast genome variation and phylogenetic relationships of Camellia species. Biomolecules 12:1474 doi: 10.3390/biom12101474 |
[52] |
Yang JB, Tang M, Li HT, Zhang ZR, Li DZ. 2013. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses. BMC Evolutionary Biology 13:84 doi: 10.1186/1471-2148-13-84 |
[53] |
Köhler M, Reginato M, Souza-Chies TT, Majure LC. 2020. Insights into chloroplast genome evolution across Opuntioideae (Cactaceae) reveals robust yet sometimes conflicting phylogenetic topologies. Frontiers in Plant Science 11:729 doi: 10.3389/fpls.2020.00729 |
[54] |
Yang JB, Yang SX, Li HT, Yang J, Li DZ. 2013. Comparative chloroplast genomes of Camellia species. PLoS One 8:e73053 doi: 10.1371/journal.pone.0073053 |
[55] |
Liu J. 2010. Collection and conservation on the genetic resources of camellia oleifera for the genetic affinity molecular identification. Master's thesis. Fujian Agriculture and Forestry University, China. www.dissertationtopic.net/doc/343404 |
[56] |
Xie Y. 2013. Study on intraspecific type classification, evaluation and genetic relationships of Camellia meiocarpa. PhD thesis. Chinese Academy of Forestry, China. www.dissertationtopic.net/doc/1796220 |
[57] |
Zhao DW, Hodkinson TR, Parnell JAN. 2023. Phylogenetics of global Camellia (Theaceae) based on three nuclear regions and its implications for systematics and evolutionary history. Journal of Systematics and Evolution 61:356−68 doi: 10.1111/jse.12837 |
[58] |
Zhuang R. 2008. Oil-Tea Camellia in China. Beijing: Science Press. |
[59] |
Patwardhan A, Ray S, Roy A. 2014. Molecular markers in phylogenetic studies - a review. Journal of Phylogenetics & Evolutionary Biology 2:131 doi: 10.4172/2329-9002.1000131 |
[60] |
Bachmann K. 1994. Molecular markers in plant ecology. New Phytologist 126:403−18 doi: 10.1111/j.1469-8137.1994.tb04242.x |
[61] |
Jia J. 1996. Molecular germplasm diagnostics and molecular marker-assisted breeding. Scientia Agricultura Sinica 29:1−10 |
[62] |
Luo C, Chen D, Cheng X, Liu H, Li Y, et al. 2018. SSR analysis of genetic relationship and classification in chrysanthemum germplasm collection. Horticultural Plant Journal 4:73−82 doi: 10.1016/j.hpj.2018.01.003 |
[63] |
Li B, Lin F, Huang P, Guo W, Zheng Y. 2020. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing. Biological Research 53:21 doi: 10.1186/s40659-020-00289-0 |