[1] |
Toh DWK, Lee WY, Zhou HZ, Sutanto CN, Lee DPS, et al. 2021. Wolfberry (Lycium barbarum) consumption with a healthy dietary pattern lowers oxidative stress in middle-aged and older adults: a randomized controlled trial. Antioxidants10−567 doi: 10.3390/antiox10040567 |
[2] |
Cai H, Yang X, Cai Q, Ren B, Qiu H, et al. 2017. Lycium barbarum L. polysaccharide (LBP) reduces glucose uptake via down-regulation of SGLT-1 in Caco2 cell. Molecules 22:341 doi: 10.3390/molecules22020341 |
[3] |
Zhang Q, Ma J, Yang Y, Deng J, Zhu K, et al. 2023. Effects of S. cerevisiae strains on the sensory characteristics and flavor profile of kiwi wine based on E-tongue, GC-IMS and 1H-NMR. LWT185 |
[4] |
Wang H, Wang NL, Ma L, Pei D, Di DL, et al. 2023. Polysaccharides from different cultivars of wolfberry: Physicochemical characteristics and protection against oxidative stress. Industrial Crops and Products 197:116548 doi: 10.1016/j.indcrop.2023.116548 |
[5] |
Qi J, Huang H, Wang J, Liu N, Chen X, et al. 2021. Insights into the improvement of bioactive phytochemicals, antioxidant activities and flavor profiles in Chinese wolfberry juice by select lactic acid bacteria. Food Bioscience 43:101264 doi: 10.1016/j.fbio.2021.101264 |
[6] |
Rodríguez LGR, Gasga VMZ, Pescuma M, Van Nieuwenhove C, Mozzi F, et al. 2021. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages. Food Research International 140:109854 doi: 10.1016/j.foodres.2020.109854 |
[7] |
Li H, Huang J, Wang Y, Wang X, Ren Y, et al. 2021. Study on the nutritional characteristics and antioxidant activity of dealcoholized sequentially fermented apple juice with Saccharomyces cerevisiae and Lactobacillus plantarum fermentation. Food Chemistry 363:130351 doi: 10.1016/j.foodchem.2021.130351 |
[8] |
Ma Y, Chen X, Xu R, Niu H, Huang Q, et al. 2023. Lactiplantibacillus plantarum fermentation enhanced the protective effect of kiwifruit on intestinal injury in rats: Based on mitochondrial morphology and function. Food Chemistry: X 20:101025 doi: 10.1016/j.fochx.2023.101025 |
[9] |
Xie H, Gao PY, Lu ZM, Wang FZ, Chai LJ, et al. 2023. Changes in physicochemical characteristics and metabolites in the fermentation of goji juice by Lactiplantibacillus plantarum. Food Bioscience 54:102881 doi: 10.1016/j.fbio.2023.102881 |
[10] |
Meng FB, Lei YT, Li QZ, Li YC, Deng Y, et al. 2022. Effect of Lactobacillus plantarum and Lactobacillus acidophilus fermentation on antioxidant activity and metabolomic profiles of loquat juice. Lwt - Food Science and Technology 171:114104 doi: 10.1016/j.lwt.2022.114104 |
[11] |
Shi F, Wang L, Li S. 2023. Enhancement in the physicochemical properties, antioxidant activity, volatile compounds, and non-volatile compounds of watermelon juices through Lactobacillus plantarum JHT78 fermentation. Food Chemistry 420:136146 doi: 10.1016/j.foodchem.2023.136146 |
[12] |
Åkerberg C, Hofvendahl K, Zacchi G, Hahn-Hågerdal B. 1998. Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production by Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour. Applied Microbiology and Biotechnology 49:682−90 doi: 10.1007/s002530051232 |
[13] |
Zacharof MP, Coss GM, Mandale SJ, Lovitt RW. 2013. Separation of lactobacilli bacteriocins from fermented broths using membranes. Process Biochemistry 48:1252−61 doi: 10.1016/j.procbio.2013.05.017 |
[14] |
Kaprasob R, Kerdchoechuen O, Laohakunjit N, Sarkar D, Shetty K. 2017. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria. Process Biochemistry 59:141−49 doi: 10.1016/j.procbio.2017.05.019 |
[15] |
Wu C, Li T, Qi J, Jiang T, Xu H, et al. 2020. Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice. LWT 122:109064 doi: 10.1016/j.lwt.2020.109064 |
[16] |
Kwaw E, Ma Y, Tchabo W, Apaliya MT, Sackey AS, et al. 2018. Impact of ultrasonication and pulsed light treatments on phenolics concentration and antioxidant activities of lactic-acid-fermented mulberry juice. LWT 92:61−66 doi: 10.1016/j.lwt.2018.02.016 |
[17] |
Xia AN, Tang XJ, Dong GZ, Lei SM, Liu YG, et al. 2021. Quality assessment of fermented rose jams based on physicochemical properties, HS-GC-MS and HS-GC-IMS. LWT 151:112153 doi: 10.1016/j.lwt.2021.112153 |
[18] |
Karoline Ferreira Leite A, Vidal Fonteles T, Godoy Alves Filho E, Andrea da Silva Oliveira F, Rodrigues S. 2023. Impact of orange juice containing potentially prebiotic ingredients on human gut microbiota composition and its metabolites. Food Chemistry 405:134706 doi: 10.1016/j.foodchem.2022.134706 |
[19] |
Oliveira RPS, Florence ACR, Silva RC, Perego P, Converti A, et al. 2009. Effect of different prebiotics on the fermentation kinetics, probiotic survival and fatty acids profiles in nonfat symbiotic fermented milk. International Journal of Food Microbiology 128:467−72 doi: 10.1016/j.ijfoodmicro.2008.10.012 |
[20] |
de Souza EL, de Albuquerque TMR, dos Santos AS, Massa NML, de Brito Alves J. 2019. Potential interactions among phenolic compounds and probiotics for mutual boosting of their health-promoting properties and food functionalities - A review. Critical Reviews in Food Science and Nutrition 59:1645−59 doi: 10.1080/10408398.2018.1425285 |
[21] |
Li T, Jiang T, Liu N, Wu C, Xu H, et al. 2021. Biotransformation of phenolic profiles and improvement of antioxidant capacities in jujube juice by select lactic acid bacteria. Food Chemistry 339:127859 doi: 10.1016/j.foodchem.2020.127859 |
[22] |
Lee M, Song JH, Choi EJ, Yun YR, Lee KW, et al. 2021. UPLC-QTOF-MS/MS and GC-MS Characterization of Phytochemicals in Vegetable Juice Fermented Using Lactic Acid Bacteria from Kimchi and Their Antioxidant Potential. Antioxidants 10:1761 doi: 10.3390/antiox10111761 |
[23] |
Gullón B, Lú-Chau TA, Moreira MT, Lema JM, Eibes G. 2017. Rutin: A review on extraction, identification and purification methods, biological activities and approaches to enhance its bioavailability. Trends in Food Science & Technology 67:220−35 doi: 10.1016/j.jpgs.2017.07.008 |
[24] |
Zhang XJ, Yu HY, Cai YJ, Ke M. 2017. Lycium barbarum polysaccharides inhibit proliferation and migration of bladder cancer cell lines BIU87 by suppressing Pi3K/AKT pathway. Oncotarget 8:5936−42 doi: 10.18632/oncotarget.13963 |