[1] |
Fu B, Tao M, Xue H, Jin H, Liu K, et al. 2022. Spinetoram resistance drives interspecific competition between Megalurothrips usitatus and Frankliniella intonsa. Pest Management Science 78:2129−40 doi: 10.1002/ps.6839 |
[2] |
Li F, Gong X, Yuan L, Pan X, Jin H, et al. 2022. Indoxacarb resistance-associated mutation of Liriomyza trifolii in Hainan, China. Pesticide Biochemistry and Physiology 183:105054 doi: 10.1016/j.pestbp.2022.105054 |
[3] |
Lopez-Reyes K, Armstrong KF, van Tol RWHM, Teulon DAJ, Bok MJ. 2022. Colour vision in thrips (Thysanoptera). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 377:20210282 doi: 10.1098/rstb.2021.0282 |
[4] |
Ogino T, Uehara T, Muraji M, Yamaguchi T, Ichihashi T, Suzuki T, et al. 2020. Author Correction: Violet LED light enhances the recruitment of a thrip predator in open fields. Scientific Reports 10:21822 doi: 10.1038/s41598-020-78514-9 |
[5] |
Kirk WDJ, de Kogel WJ, Koschier EH, Teulon DAJ. 2021. Semiochemicals for Thrips and Their Use in Pest Management. Annual Review of Entomology 66:101−19 doi: 10.1146/annurev-ento-022020-081531 |
[6] |
Abdullah ZS, Greenfield BP, Ficken KJ, Taylor JW, Wood M, et al. 2015. A new attractant for monitoring western flower thrips, Frankliniella occidentalis in protected crops. SpringerPlus 4:89 doi: 10.1186/s40064-015-0864-3 |
[7] |
Badillo-Vargas IE, Rotenberg D, Schneweis BA, Whitfield AE. 2015. RNA interference tools for the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology 76:36−46 doi: 10.1016/j.jinsphys.2015.03.009 |
[8] |
Wakil W, Kavallieratos NG, Ghazanfar MU, Usman M. 2022. Laboratory and field studies on the combined application of Beauveria bassiana and fipronil against four major stored-product coleopteran insect pests. Environmental Science and Pollution Research 29:34912−29 doi: 10.1007/s11356-021-17527-x |
[9] |
Sparks TC, Crossthwaite AJ, Nauen R, Banba S, Cordova D, et al. 2020. Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification - a tool for resistance management. Pesticide Biochemistry and Physiology 167:104587 doi: 10.1016/j.pestbp.2020.104587 |
[10] |
Cook SC. 2019. Compound and dose-dependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology. Insects 10:18 doi: 10.3390/insects10010018 |
[11] |
Mouden S, Klinkhamer PGL, Choi YH, Leiss KA. 2017. Towards eco-friendly crop protection: natural deep eutectic solvents and defensive secondary metabolites. Phytochemistry Reviews 16:935−51 doi: 10.1007/s11101-017-9502-8 |
[12] |
Wang ZH, Gong YJ, Jin GH, Li BY, Chen JC, et al. 2016. Field-evolved resistance to insecticides in the invasive western flower thrips Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) in China. Pest Management Science 72:1440−44 doi: 10.1002/ps.4200 |
[13] |
Gao R, Lu R, Qiu X, Wang L, Zhang K, et al. 2023. Detection of putative mutation I873S in the sodium channel of Megalurothrips usitatus (Bagnall) which may be associated with pyrethroid resistance. Insects 14:388 doi: 10.3390/insects14040388 |
[14] |
Shen XJ, Chen JC, Cao LJ, Ma ZZ, Sun LN, et al. 2023. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. Pest Management Science 79:3218−26 doi: 10.1002/ps.7502 |
[15] |
Wu J, Yuan L, Jin H, Zhang K, Li F, et al. 2023. Double sodium channel mutation, I265T/L1014F, is possibly related to pyrethroid-resistant in Thrips palmi. Archives of Insect Biochemistry and Physiology 113:e22021 doi: 10.1002/arch.22021 |
[16] |
Scott JG. 2019. Life and death at the voltage-sensitive sodium channel: evolution in response to insecticide use. Annual Review of Entomology 64:243−57 doi: 10.1146/annurev-ento-011118-112420 |
[17] |
Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, et al. 2014. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology 50:1−17 doi: 10.1016/j.ibmb.2014.03.012 |
[18] |
Matsuda K, Ihara M, Sattelle DB. 2020. Neonicotinoid insecticides: molecular targets, resistance, and toxicity. Annual Review of Pharmacology and Toxicology 60:241−55 doi: 10.1146/annurev-pharmtox-010818-021747 |
[19] |
Perry T, Chen W, Ghazali R, Yang YT, Christesen D, et al. 2021. Role of nicotinic acetylcholine receptor subunits in the mode of action of neonicotinoid, sulfoximine and spinosyn insecticides in Drosophila melanogaster. Insect Biochemistry and Molecular Biology 131:103547 doi: 10.1016/j.ibmb.2021.103547 |
[20] |
Wan Y, Yuan G, He B, Xu B, Xie W, et al. 2018. Foccα6, a truncated nAChR subunit, positively correlates with spinosad resistance in the western flower thrips, Frankliniella occidentalis (Pergande). Insect Biochemistry and Molecular Biolo 99:1−10 doi: 10.1016/j.ibmb.2018.05.002 |
[21] |
Zhang K, Yuan J, Wan Y, Wang J, Zheng X, et al. 2023. An insertion in intron 3 of nAChR α6 subunit is associated with spinosad resistance in the western flower thrips Frankliniella occidentalis. Entomologia Generalis 43:605−13 doi: 10.1127/entomologia/2022/1733 |
[22] |
Doukas D, Payne CC. 2007. The use of ultraviolet-blocking films in insect pest management in the UK; effects on naturally occurring arthropod pest and natural enemy populations in a protected cucumber crop. Annals of Applied Biology 151:221−31 doi: 10.1111/j.1744-7348.2007.00169.x |
[23] |
Antignus Y, Mor N, Ben Joseph R, Lapidot M, Cohen S. 1996. Ultraviolet-absorbing plastic sheets protect crops from insect pests and from virus diseases vectored by insects. Environmental Entomology 25:919−24 doi: 10.1093/ee/25.5.919 |
[24] |
Zhu L, Wang ZH, Gong YJ, Ren ZH, Jin GH, et al. 2016. Efficiency of UV-absorbing film in the management of pest insects and its effects on the growth and quality of eggplants. Acta Entomologica Sinica 59(2):227−38 doi: 10.16380/j.kcxb.2016.02.013 |
[25] |
Kigathi R, Poehling HM. 2012. UV-absorbing films and nets affect the dispersal of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Applied Entomology 136:761−71 doi: 10.1111/j.1439-0418.2012.01707.x |
[26] |
Wang L, Chen J, Zhao C, Jin H, Li F, et al. 2023. Production and quality of Hami melon (Cucumis melo var reticulatus) and pest population of Thrips palmi in UV-blocking film greenhouses. Management Science 79:4011−17 doi: 10.1002/ps.7597 |
[27] |
Tang YC, Zhou CL, Chen XM, Zheng H. 2013. Visual and Olfactory Responses of Seven Butterfly Species During Foraging. Journal of Insect Behavior 26:387−401 doi: 10.1007/s10905-012-9358-0 |
[28] |
Hussain M, Wang Z, Arthurs SP, Gao J, Ye F, et al. 2022. A review of Franklinothrips vespiformis (Thysanoptera: Aeolothripidae): life history, distribution, and prospects as a biological control agent. Insects 13:108 doi: 10.3390/insects13020108 |
[29] |
Makabe T, Futamura T, Noudomi T, Wakakuwa M, Arikawa K. 2014. Phototaxis of western flower thrips, Frankliniella occidentalis and onion thrips, Thrips tabaci and the possibility of controlling thrips using ultraviolet-emitting trap in the greenhouse of Satsuma Mandarin (Citrus unshiu). Japanese Journal of Applied Entomology and Zoology 58:187−95 doi: 10.1303/jjaez.2014.187 |
[30] |
Otani Y, Wakakuwa M, Arikawa K. 2014. Relationship between action spectrum and spectral sensitivity of compound eyes relating phototactic behavior of the western flower thrips, Frankliniella occidentalis. Japanese Journal of Applied Entomology and Zoology 58:177−85 doi: 10.1303/jjaez.2014.177 |
[31] |
van der Kooi CJ, Stavenga DG, Arikawa K, Belušič G, Kelber A. 2021. Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology. Annual Review of Entomology 66:435−61 doi: 10.1146/annurev-ento-061720-071644 |
[32] |
Matteson N, Terry I, Ascoli-Christensen A, Gilbert C. 1992. Spectral efficiency of the western flower thrips, Frankliniella occidentalis. Journal of Insect Physiology 38:453−59 doi: 10.1016/0022-1910(92)90122-T |
[33] |
Kishi M, Wakakuwa M, Kansako M, Inuma T, Arikawa K. 2014. Action spectrum of phototactic behavior and compound eye spectral sensitivity in the yellow tea thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae). Japanese Journal of Applied Entomology and Zoology 58:13−16 doi: 10.1303/jjaez.2014.13 |
[34] |
Egri Á, Farkas P, Bernáth B, Guerin PM, Fail J. 2020. Spectral sensitivity of L2 biotype in the Thrips tabaci cryptic species complex. Journal of Insect Physiology 121:103999 doi: 10.1016/j.jinsphys.2019.103999 |
[35] |
Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, et al. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75:291−95 doi: 10.1016/S0168-1656(99)00163-7 |
[36] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ Method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[37] |
Hou Q, Yuan L, Jin H, Yan H, Li F, et al. 2023. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Megalurothrips usitatus (thysanoptera: thripidae). Frontiers in Physiology 14:1161680 doi: 10.3389/fphys.2023.1161680 |
[38] |
Fan F, Ren HM, Lu LH, Zhang LP, Wei GS. 2012. Effect of spectral sensitivity and intensity response on the phototaxis of Frankliniella Occidentalis (Pergande). Acta Ecologica Sinica 32:1790−95 doi: 10.5846/stxb201102170179 |
[39] |
Morse JG, Hoddle MS. 2006. Invasion biology of thrips. Annual Review of Entomology 51:67−89 doi: 10.1146/annurev.ento.51.110104.151044 |
[40] |
Stuart RR, Gao YL, Lei ZR. 2011. Thrips: pests of concern to China and the United States. Agricultural Sciences in China 10:867−92 doi: 10.1016/S1671-2927(11)60073-4 |
[41] |
Ghosh A, Jagdale SS, Basavaraj, Dietzgen RG, Jain RK. 2020. Genetics of Thrips palmi (Thysanoptera: Thripidae). Journal of Pest Science 93:27−39 doi: 10.1007/s10340-019-01160-2 |
[42] |
Forcioli D, Frey B, Frey JE. 2002. High nucleotide diversity in the para-like voltage-sensitive sodium channel gene sequence in the western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology 95:838−48 doi: 10.1603/0022-0493-95.4.838 |
[43] |
Jouraku A, Kuwazaki S, Iida H, Ohta I, Kusano H, et al. 2019. T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan. Pesticide Biochemistry and Physiology 158:77−87 doi: 10.1016/j.pestbp.2019.04.012 |
[44] |
Toda S, Morishita M. 2009. Identification of three point mutations on the sodium channel gene in pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae). Journal of Economic Entomology 102:2296−300 doi: 10.1603/029.102.0635 |
[45] |
Wu M, Gotoh H, Waters T, Walsh DB, Lavine LC. 2014. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene. Pest Management Science 70:977−81 doi: 10.1002/ps.3638 |
[46] |
Ihara M, Furutani S, Shigetou S, Shimada S, Niki K, et al. 2020. Cofactor-enabled functional expression of fruit fly, honeybee, and bumblebee nicotinic receptors reveals picomolar neonicotinoid actions. Proceedings of the National Academy of Sciences of the United States of America 117:16283−91 doi: 10.1073/pnas.2003667117 |
[47] |
Xu X, Ding Q, Wang X, Wang R, Ullah F, et al. 2022. V101I and R81T mutations in the nicotinic acetylcholine receptor β1 subunit are associated with neonicotinoid resistance in Myzus persicae. Pest Management Science 78:1500−7 doi: 10.1002/ps.6768 |
[48] |
Hiruta E, Aizawa M, Nakano A, Sonoda S. 2018. Nicotinic acetylcholine receptor α6 subunit mutation (G275V) found in a spinosad-resistant strain of the flower thrips, Frankliniella intonsa (Thysanoptera: Thripidae). Journal of Pesticide Science 43:272−76 doi: 10.1584/jpestics.D18-007 |
[49] |
Chen Y, Nguyen DT, Gupta R, Herron GA. 2021. Mutation (G275E) of nAChR subunit Foα6 associated with spinetoram resistance in Australian western flower thrips, Frankliniella occidentalis (Pergande). Molecular Biology Reports 48:3155−63 doi: 10.1007/s11033-021-06372-3 |
[50] |
Shi P, Guo SK, Gao YF, Chen JC, Gong YJ, et al. 2021. Association between susceptibility of Thrips palmi to spinetoram and frequency of G275E mutation provides basis for molecular quantification of field-evolved resistance. Journal of Economic Entomology 114:339−47 doi: 10.1093/jee/toaa314 |
[51] |
Ma Z, Liu J. 2020. Retinoid X receptor modulates olfactory attraction through Gα signaling in the migratory locusts. Biochemistry and Molecular Biology 116:103265 doi: 10.1016/j.ibmb.2019.103265 |
[52] |
Yano S, Konishi M, Akino T. 2022. Avoidance of ant chemical traces by spider mites and its interpretation. Experimental and Applied Acarology 88:153−63 doi: 10.1007/s10493-022-00752-5 |
[53] |
Dáder B, Plaza M, Fereres A, Moreno A. 2015. Flight behaviour of vegetable pests and their natural enemies under different ultraviolet-blocking enclosures. Annals of Applied Biology 167:116−26 doi: 10.1111/aab.12213 |
[54] |
Vukusic P, Sambles JR, Lawrence CR. 2000. Colour mixing in wing scales of a butterfly. Nature 404:457 doi: 10.1038/35006561 |
[55] |
Fennell JT, Fountain MT, Paul ND. 2019. Direct effects of protective cladding material on insect pests in crops. Crop Protection 121:147−56 doi: 10.1016/j.cropro.2019.04.003 |
[56] |
Nilsson DE, Smolka J. 2021. Quantifying biologically essential aspects of environmental light. Journal of the Royal Society 18:20210184 doi: 10.1098/rsif.2021.0184 |
[57] |
Costa HS, Robb KL, Wilen CA. 2002. Field trials measuring the effects of ultraviolet-absorbing greenhouse plastic films on insect populations. Journal of Economic Entomology 95:113−20 doi: 10.1603/0022-0493-95.1.113 |
[58] |
Doukas D, Payne CC. 2007. Greenhouse whitefly (Homoptera: Aleyrodidae) dispersal under different UV-light environments. Journal of Economic Entomology 100:389−97 doi: 10.1093/jee/100.2.389 |
[59] |
Mutwiwa UN, Borgemeister C, von Elsner B, Tantau HJ. 2005. Effects of UV-absorbing plastic films on greenhouse whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology 98:1221−28 doi: 10.1603/0022-0493-98.4.1221 |
[60] |
Miranda MP, Dos Santos FL, Felippe MR, Moreno A, Fereres A. 2015. Effect of UV-blocking plastic films on take-off and host plant finding ability of Diaphorina citri (Hemiptera: Liviidae). Journal of Economic Entomology 108:245−51 doi: 10.1093/jee/tou036 |
[61] |
Shimoda M, Honda KI. 2013. Insect reactions to light and its applications to pest management. Applied Entomology and Zoology 48:413−21 doi: 10.1007/s13355-013-0219-x |
[62] |
Antignus Y. 2000. Manipulation of wavelength-dependent behaviour of insects: an IPM tool to impede insects and restrict epidemics of insect-borne viruses. Virus Research 71:213−20 doi: 10.1016/S0168-1702(00)00199-4 |
[63] |
Nguyen THN, Borgemeister C, Max J, Poehling HM. 2009. Manipulation of ultraviolet light affects immigration behavior of Ceratothripoides claratris (Thysanoptera: Thripidae). Journal of Economic Entomology 102:1559−66 doi: 10.1603/029.102.0421 |
[64] |
Mazza CA, Izaguirre MM, Curiale J, Ballaré CL. 2010. A look into the invisible: ultraviolet-B sensitivity in an insect (Caliothrips phaseoli) revealed through a behavioural action spectrum. Proceedings Biological Sciences 277:367−73 doi: 10.1098/rspb.2009.1565 |
[65] |
Hunt DM, Wilkie SE, Bowmaker JK, Poopalasundaram S. 2001. Vision in the ultraviolet. Cellular and Molecular Life Sciences 58:1583−98 doi: 10.1007/PL00000798 |
[66] |
Kelber A, Osorio D. 2010. From spectral information to animal colour vision: experiments and concepts. Proceedings Biological Sciences 277:1617−25 doi: 10.1098/rspb.2009.2118 |
[67] |
Haifeng J, Chaozheng W, Qingfang H, Limin X, Huajian Z, et al. 2023. Cloning and bioinformatics analysis of MuRhodopsin gene in Megalurothrips usitatus. Journal of Tropical Biology 14:651−59 doi: 10.15886/j.cnki.rdswxb.20220105 |
[68] |
Ni JD, Baik LS, Holmes TC, Montell C. 2017. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Nature 545:340−44 doi: 10.1038/nature22325 |
[69] |
Lu JB, Li ZD, Ye ZX, Huang HJ, Chen JP, et al. 2023. Long-wave opsin involved in body color plastic development in Nilaparvata lugens. BMC Genomics 24:353 doi: 10.1186/s12864-023-09470-7 |
[70] |
Briscoe AD, Bybee SM, Bernard GD, Yuan F, Sison-Mangus MP, et al. 2010. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proceedings of the National Academy of Sciences of the United States of America 107:3628−33 doi: 10.1073/pnas.0910085107 |
[71] |
Bybee SM, Yuan F, Ramstetter MD, Llorente-Bousquets J, Reed RD, et al. 2012. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. The American Naturalist 179:38−51 doi: 10.1086/663192 |
[72] |
Finkbeiner SD, Briscoe AD, Reed RD. 2014. Warning signals are seductive: relative contributions of color and pattern to predator avoidance and mate attraction in Heliconius butterflies. Evolution 68:3410−20 doi: 10.1111/evo.12524 |
[73] |
Borst A. 2009. Drosophila's view on insect vision. Current Biology 19:R36−R47 doi: 10.1016/j.cub.2008.11.001 |