[1]

Deshpande D, Chhugani K, Chang Y, Karlsberg A, Loeffler C, et al. 2023. RNA-seq data science: From raw data to effective interpretation. Frontiers in Genetics 14:997383

doi: 10.3389/fgene.2023.997383
[2]

Wang Z, Gerstein M, Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nature Reviews Genetics 10:57−63

doi: 10.1038/nrg2484
[3]

Ozsolak F, Milos PM. 2011. RNA sequencing: advances, challenges and opportunities. Nature Reviews Genetics 12:87−98

doi: 10.1038/nrg2934
[4]

Geraci F, Saha I, Bianchini M. 2020. Editorial: RNA-Seq analysis: methods, applications and challenges. Frontiers in Genetics 11:220

doi: 10.3389/fgene.2020.00220
[5]

Marguerat S, Bähler J. 2010. RNA-seq: from technology to biology. Cellular and Molecular Life Sciences 67:569−79

doi: 10.1007/s00018-009-0180-6
[6]

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5:621−28

doi: 10.1038/nmeth.1226
[7]

Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, et al. 2013. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings in Bioinformatics 14:671−83

doi: 10.1093/bib/bbs046
[8]

Zhao Y, Li MC, Konaté MM, Chen L, Das B, et al. 2021. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository Journal of Translational Medicine 19:269

doi: 10.1186/s12967-021-02936-w
[9]

Wang L, Xie W, Chen Y, Tang W, Yang J, et al. 2010. A dynamic gene expression atlas covering the entire life cycle of rice. The Plant Journal 61:752−66

doi: 10.1111/j.1365-313X.2009.04100.x
[10]

Li G, Sun X, Zhu X, Wu B, Hong H, et al. 2023. Selection and validation of reference genes in virus-infected sweet potato plants. Genes 14:1477

doi: 10.3390/genes14071477
[11]

Wang Q, Guo C, Yang S, Zhong Q, Tian J. 2023. Screening and verification of reference genes for analysis of gene expression in garlic (Allium sativum L.) under cold and drought stress. Plants 12:763

doi: 10.3390/plants12040763
[12]

Ahmed U, Xie Q, Shi X, Zheng B. 2022. Development of reference genes for horticultural plants. Critical Reviews in Plant Sciences 41:190−208

doi: 10.1080/07352689.2022.2084227
[13]

Panina Y, Germond A, Masui S, Watanabe TM. 2018. Validation of common housekeeping genes as reference for qPCR gene expression analysis during iPS reprogramming process. Scientific Reports 8:8716

doi: 10.1038/s41598-018-26707-8
[14]

Bustin SA, Beaulieu JF, Huggett J, Jaggi R, Kibenge FSB, et al. 2010. MIQE précis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Molecular Biology 11:74

doi: 10.1186/1471-2199-11-74
[15]

Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnology Letters 26:509−15

doi: 10.1023/B:BILE.0000019559.84305.47
[16]

Huis R, Hawkins S, Neutelings G. 2010. Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.). BMC Plant Biology 10:71

doi: 10.1186/1471-2229-10-71
[17]

Gutierrez L, Mauriat M, Guénin S, Pelloux J, Lefebvre JF, et al. 2008. The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnology Journal 6:609−18

doi: 10.1111/j.1467-7652.2008.00346.x
[18]

Guénin S, Mauriat M, Pelloux J, Van Wuytswinkel O, Bellini C, et al. 2009. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. Journal of Experimental Botany 60:487−93

doi: 10.1093/jxb/ern305
[19]

Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, et al. 1999. Housekeeping genes as internal standards: use and limits. Journal of Biotechnology 75:291−95

doi: 10.1016/S0168-1656(99)00163-7
[20]

Borges AF, Fonseca C, Ferreira RB, Lourenço AM, Monteiro S. 2014. Reference gene validation for quantitative RT-PCR during biotic and abiotic stresses in Vitis vinifera. PLoS One 9:e111399

doi: 10.1371/journal.pone.0111399
[21]

Sun H, Li F, Ruan Q, Zhong X. 2016. Identification and validation of reference genes for quantitative real-time PCR studies in Hedera helix L. Plant Physiology and Biochemistry 108:286−94

doi: 10.1016/j.plaphy.2016.07.022
[22]

Imai T, Ubi BE, Saito T, Moriguchi T. 2014. Evaluation of reference genes for accurate normalization of gene expression for real time-quantitative PCR in Pyrus pyrifolia using different tissue samples and seasonal conditions. PLoS One 9:e86492

doi: 10.1371/journal.pone.0086492
[23]

Chen F, Song Y, Li X, Chen J, Mo L, et al. 2019. Genome sequences of horticultural plants: past, present, and future. Horticulture Research 6:112

doi: 10.1038/s41438-019-0195-6
[24]

Zhao J, Yang F, Feng J, Wang Y, Lachenbruch B, et al. 2017. Genome-wide constitutively expressed gene analysis and new reference gene selection based on transcriptome data: a case study from poplar/canker disease interaction. Frontiers in Plant Science 8:1876

doi: 10.3389/fpls.2017.01876
[25]

Chen Y, Luo B, Liu C, Zhang Z, Zhou C, et al. 2021. Identification of reliable reference genes for quantitative real-time PCR analysis of the Rhus chinensis Mill. leaf response to temperature changes. FEBS Open Bio 11:2763−73

doi: 10.1002/2211-5463.13275
[26]

Brunner AM, Busov VB, Strauss SH. 2004. Poplar genome sequence: functional genomics in an ecologically dominant plant species. Trends in Plant Science 9:49−56

doi: 10.1016/j.tplants.2003.11.006
[27]

Chao Q, Gao Z, Zhang D, Zhao B, Dong F, et al. 2019. The developmental dynamics of the Populus stem transcriptome. Plant Biotechnology Journal 17:206−19

doi: 10.1111/pbi.12958
[28]

Wang J, Tian Y, Li J, Yang K, Xing S, et al. 2019. Transcriptome sequencing of active buds from Populus deltoides CL. and Populus × zhaiguanheibaiyang reveals phytohormones involved in branching. Genomics 111:700−9

doi: 10.1016/j.ygeno.2018.04.007
[29]

Han X, An Y, Zhou Y, Liu C, Yin W, et al. 2020. Comparative transcriptome analyses define genes and gene modules differing between two Populus genotypes with contrasting stem growth rates. Biotechnology for Biofuels 13:139

doi: 10.1186/s13068-020-01758-0
[30]

Shi R, Wang JP, Lin YC, Li Q, Sun Y, et al. 2017. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa. Planta 245:927−38

doi: 10.1007/s00425-016-2640-1
[31]

Yu L, Ma J, Niu Z, Bai X, Lei W, et al. 2017. Tissue-specific transcriptome analysis reveals multiple responses to salt stress in Populus euphratica seedlings. Genes 8:372

doi: 10.3390/genes8120372
[32]

Sundell D, Street NR, Kumar M, Mellerowicz EJ, Kucukoglu M, et al. 2017. AspWood: high-spatial-resolution transcriptome profiles reveal uncharacterized modularity of wood formation in Populus tremula. The Plant Cell 29:1585−604

doi: 10.1105/tpc.17.00153
[33]

Filichkin SA, Hamilton M, Dharmawardhana PD, Singh SK, Sullivan C, et al. 2018. Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Frontiers in Plant Science 9:5

doi: 10.3389/fpls.2018.00005
[34]

Zinkgraf M, Gerttula S, Zhao S, Filkov V, Groover A. 2018. Transcriptional and temporal response of Populus stems to gravi-stimulation. Journal of Integrative Plant Biology 60:578−90

doi: 10.1111/jipb.12645
[35]

Rogier O, Chateigner A, Amanzougarene S, Lesage-Descauses MC, Balzergue S, et al. 2018. Accuracy of RNAseq based SNP discovery and genotyping in Populus nigra. BMC Genomics 19:909

doi: 10.1186/s12864-018-5239-z
[36]

Liao W, Ji L, Wang J, Chen Z, Ye M, et al. 2014. Identification of glutathione S-transferase genes responding to pathogen infestation in Populus tomentosa. Functional & Integrative Genomics 14:517−29

doi: 10.1007/s10142-014-0379-y
[37]

Lu S, Li Q, Wei H, Chang MJ, Tunlaya-Anukit S, et al. 2013. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa. Proceedings of the National Academy of Sciences of the United States of America 110:10848−53

doi: 10.1073/pnas.1308936110
[38]

Felten J, Vahala J, Love J, Gorzsás A, Rüggeberg M, et al. 2018. Ethylene signaling induces gelatinous layers with typical features of tension wood in hybrid aspen. New Phytologist 218:999−1014

doi: 10.1111/nph.15078
[39]

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114−20

doi: 10.1093/bioinformatics/btu170
[40]

Delhomme N, Mähler N, Schiffthaler B, Sundell D, Mannapperuma C, et al. 2014. Guidelines for RNA-Seq data analysis. EpiGeneSys Protocol 67:1−24

[41]

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. 2013. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15−21

doi: 10.1093/bioinformatics/bts635
[42]

Liao Y, Smyth GK, Shi W. 2013. The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Research 41:e108

doi: 10.1093/nar/gkt214
[43]

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139−40

doi: 10.1093/bioinformatics/btp616
[44]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[45]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[46]

Wang Y, Chen Y, Ding L, Zhang J, Wei J, et al. 2016. Validation of reference genes for gene expression by quantitative real-time RT-PCR in stem segments spanning primary to secondary growth in Populus tomentosa. PLoS One 11:e0157370

doi: 10.1371/journal.pone.0157370
[47]

Yun T, Li J, Xu Y, Zhou A, Zong D, et al. 2019. Selection of reference genes for RT-qPCR analysis in the bark of Populus yunnanensis cuttings. Journal of Environmental Biology 40:584−91

doi: 10.22438/jeb/40/3(SI)/Sp-24
[48]

Tang F, Chu L, Shu W, He X, Wang L, et al. 2019. Selection and validation of reference genes for quantitative expression analysis of miRNAs and mRNAs in Poplar. Plant Methods 15:35

doi: 10.1186/s13007-019-0420-1
[49]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[50]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. Mega X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[51]

Qu W, Zhou Y, Zhang Y, Lu Y, Wang X, et al. 2012. MFEprimer-2.0: a fast thermodynamics-based program for checking PCR primer specificity. Nucleic Acids Research 40:W205−W208

doi: 10.1093/nar/gks552
[52]

Shi Q, Tian D, Wang J, Chen A, Miao Y, et al. 2023. Overexpression of miR390b promotes stem elongation and height growth in Populus. Horticulture Research 10:uhac258

doi: 10.1093/hr/uhac258
[53]

Urbancsok J, Donev EN, Sivan P, van Zalen E, Barbut FR, et al. 2023. Flexure wood formation via growth reprogramming in hybrid aspen involves jasmonates and polyamines and transcriptional changes resembling tension wood development. New Phytologist 240:2312−34

doi: 10.1111/nph.19307
[54]

Balasubramanian VK, Rivas-Ubach A, Winkler T, Mitchell H, Moran J, et al. 2023. Modulation of polar auxin transport identifies the molecular determinants of source-sink carbon relationships and sink strength in poplar. Tree Physiologytpad073

doi: 10.1093/treephys/tpad073
[55]

Kong L, Song Q, Wei H, Wang Y, Lin M, et al. 2023. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA-mediated signaling in Populus. New Phytologist 240:1848−67

doi: 10.1111/nph.19251
[56]

Guo Y, Wang S, Yu K, Wang H, Xu H, et al. 2023. Manipulating microRNA miR408 enhances both biomass yield and saccharification efficiency in poplar. Nature Communications 14:4285

doi: 10.1038/s41467-023-39930-3
[57]

Li M, Dong H, Li J, Dai X, Lin J, et al. 2023. PtrVCS2 regulates drought resistance by changing vessel morphology and stomatal closure in Populus trichocarpa. International Journal of Molecular Sciences 24:4458

doi: 10.3390/ijms24054458
[58]

Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, et al. 2009. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Research 37:e45

doi: 10.1093/nar/gkp045
[59]

Yang C, Yuan X, Zhang J, Sun W, Liu Z, et al. 2020. Comprehensive transcriptome analysis of reference genes for fruit development of Euscaphis konishii. PeerJ 8:e8474

doi: 10.7717/peerj.8474
[60]

Liang L, He Z, Yu H, Wang E, Zhang X, et al. 2020. Selection and validation of reference genes for gene expression studies in Codonopsis pilosula based on transcriptome sequence data. Scientific Reports 10:1362

doi: 10.1038/s41598-020-58328-5
[61]

Zhu L, Yang C, You Y, Liang W, Wang N, et al. 2019. Validation of reference genes for qRT-PCR analysis in peel and flesh of six apple cultivars (Malus domestica) at diverse stages of fruit development. Scientia Horticulturae 244:165−71

doi: 10.1016/j.scienta.2018.09.033
[62]

Lyu S, Yu Y, Xu S, Cai W, Chen G, et al. 2020. Identification of appropriate reference genes for normalizing miRNA expression in citrus infected by Xanthomonas citri subsp. citri. Genes 11:17

doi: 10.3390/genes11010017
[63]

Galimba K, Tosetti R, Loerich K, Micheal L, Pabhakar S, et al. 2020. Identification of early fruit development reference genes in plum. PLoS One 15:e0230920

doi: 10.1371/journal.pone.0230920
[64]

Luo M, Gao Z, Li H, Li Q, Zhang C, et al. 2018. Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Scientific Reports 8:4444

doi: 10.1038/s41598-018-22743-6