[1]

Rafferty JP. 2024. Morocco earthquake of 2023. Morocco: Encyclopedia Britannica Press.

[2]

Biswas RN, Islam MN, Islam MN. 2018. Modeling on management strategies for spatial assessment of earthquake disaster vulnerability in Bangladesh. Modeling Earth Systems and Environment 4(4):1377−1401

doi: 10.1007/s40808-018-0507-0
[3]

Hsu WK, Chiang WL, Chen CW. 2013. Earthquake risk assessment and optimal risk management strategies for hi-tech fabs in Taiwan. Natural hazards 65:2063−76

doi: 10.1007/s11069-012-0462-4
[4]

Basaglia A, Aprile A, Spacone E, Pelà L. 2020. Assessing community resilience, housing recovery and impact of mitigation strategies at the urban scale: a case study after the 2012 Northern Italy Earthquake. Bulletin of Earthquake Engineering 18(13):6039−74

doi: 10.1007/s10518-020-00919-8
[5]

García-Ayllón S, Tomás A, Ródenas JL. 2019. The spatial perspective in post-earthquake evaluation to improve mitigation strategies: Geostatistical analysis of the seismic damage applied to a real case study. Applied Sciences 9(15):3182

doi: 10.3390/app9153182
[6]

Kreibich H, de Ruiter MC, Goda K, Keiler M, Suppasri A, et al. 2022. Critical research in the water-related multi-hazard field. Nature Sustainability 5(2):90−91

doi: 10.1038/s41893-021-00833-0
[7]

Iervolino I. 2022. Risk-targeted seismic design: Prospects, applications, and open issues, for the next generation of building codes. Earthquake Engineering & Structural Dynamics 51(6):1319−20

doi: 10.1002/eqe.3640
[8]

Çetin HC. 2013. Disaster crises management in Turkey: 1999 Marmara earthquake case. Journal of Human Sciences 10(2):628−36

[9]

Gruia LC. 2022. On the Seismic Resilience of Interwar Buildings. Bulletin of the Polytechnic Institute of Iași: Construction. Architecture Section 67(3):119−32

doi: 10.2478/bipca-2021-0030
[10]

Allen TI, Griffin JD, Leonard M, Clark DJ, Ghasemi H. 2020. The 2018 national seismic hazard assessment of Australia: Quantifying hazard changes and model uncertainties. Earthquake Spectra 36(1):5−41

doi: 10.1177/8755293019878199
[11]

Bahuguna A, Sil A. 2020. Comprehensive seismicity, seismic sources and seismic hazard assessment of Assam, North East India. Journal of Earthquake Engineering 24(2):254−97

doi: 10.1080/13632469.2018.1453405
[12]

Cirillo D. 2020. Digital field mapping and drone-aided survey for structural geological data collection and seismic hazard assessment: case of the 2016 central Italy earthquakes. Applied Sciences 10(15):5233

doi: 10.3390/app10155233
[13]

Verma M, Bansal BK. 2013. Active fault mapping: An initiative towards seismic hazard assessment in India. Journal of the Geological Society of India 82:103−6

doi: 10.1007/s12594-013-0128-1
[14]

Abdulnaby W, Onur T, Gök R, Shakir AM, Mahdi H, Al-Shukri H, et al. 2020. Probabilistic seismic hazard assessment for Iraq. Journal of Seismology 24:595−611

doi: 10.1007/s10950-020-09919-2
[15]

Alpyürür M, Lav MA. 2022. An assessment of probabilistic seismic hazard for the cities in Southwest Turkey using historical and instrumental earthquake catalogs. Natural Hazards 114:335−65

doi: 10.1007/s11069-022-05392-x
[16]

Un EM, Erberik MA, Askan A. 2015. Performance assessment of Turkish residential buildings for seismic damage and loss estimation. Journal of Performance of Constructed Facilities 29(2):04014063

doi: 10.1061/(ASCE)CF.1943-5509.0000547
[17]

Iaccarino AG, Picozzi M, Bindi D, Spallarossa D. 2020. On-site earthquake early warning: predictive models for acceleration response spectra considering site-effects. Bulletin of the Seismological Society of America 110:1289−304

doi: 10.5194/egusphere-egu2020-8939
[18]

Gasparini P, Manfredi G, Zschau J. 2010. Earthquake Early Warning Systems. Heidelberg, Berlin: Springer. https://doi.org/10.1007/978-3-540-72241-0

[19]

Stankiewicz J, Bindi D, Oth A, Parolai S. 2015. Toward a cross-border early-warning system for Central Asia. Annals of Geophysics 58(1):s0111

doi: 10.4401/ag-6667
[20]

Chen KH, Liang WT, Lin CH, Wu LY. 2020. Citizen seismology in Taiwan: Development, outreach, and formative assessment of near-real time earthquake game competition activities. Frontiers in Earth Science 8:154

doi: 10.3389/feart.2020.00154
[21]

Kingsbury PA, Pettinga JR, Van Dissen RJ. 2001. Earthquake hazard and risk assessment study for the Canterbury region, South Island, New Zealand: Outline of programme development. Bulletin of the New Zealand Society for Earthquake Engineering 34(4):276−81

doi: 10.5459/bnzsee.34.4.276-281
[22]

Finzi Y, Ganz N, Limon Y, Langer S. 2021. Improving community resilience and emergency plans by mapping risk and preparedness at the neighborhood scale. GeoHazards 2(2):120−36

doi: 10.3390/geohazards2020007
[23]

Mwafy A. 2019. Earthquake Risk Management Systems and Their Applications for Building Seismic-Resilient Communities. In Resilient Structures and Infrastructure, eds. Noroozinejad Farsangi E, Takewaki I, Yang T, Astaneh-Asl A, Gardoni P. Singapore: Springer Press. pp. 129−57. https://doi.org/10.1007/978-981-13-7446-3_5

[24]

Dey C, Baruah S, Choudhury BK, Chetia T, Saikia S, et al. 2021. Living with Earthquakes: Educating masses through earthquake awareness: North East (NE) India perspective. Annals of Geophysics 64(3):SE330

doi: 10.4401/ag-8479
[25]

Gociman CO, Georgescu ES, Florescu T, Craifaleanu IG, Moscu CI, et al. 2015. Concept of a community security centre in the multi-hazard environment of a protected area in Bucharest, Romania. In Sustainable Development. WIT Press. pp. 985−95. www.witpress.com/elibrary/wit-transactions-on-the-built-environment/168/34832

[26]

Welton-Mitchell C, Awale R, James L, Khanal S. 2017. Investigating community resilience in Bhaktapur district and surrounding areas in Nepal following the 2015 earthquake. 16th World Conference on Earthquake Engineering, Santiago, 2017. Oakland, California: Earthquake Engineering Research Institute (EERI). https://api.semanticscholar.org/CorpusID:52838747

[27]

Abarca A, Monteiro R. 2019. Towards large scale seismic risk assessment in Algeria: case study to the city of Blida. IOP Conference Series: Materials Science and Engineering 603(5):052065

doi: 10.1088/1757-899x/603/5/052065
[28]

Nepal P, Khanal NR, Pangali Sharma BP. 2018. Policies and institutions for disaster risk management in Nepal: A review. Geographical Journal of Nepal 11:1−24

doi: 10.3126/gjn.v11i0.19546
[29]

Cahueñas H. 2019. Legal disaster risk reduction cooperation during ecuador's earthquake. Proceedings of the ASIL Annual Meeting 113:133−36

doi: 10.1017/amp.2019.175
[30]

Khan AN, Ali A. (2015). NGOs and Disaster Risk Reduction in Pakistan. In Disaster Risk Reduction Approaches in Pakistan. Disaster Risk Reduction, eds. Rahman AU, Khan A, Shaw R. Tokyo: Springer. pp. 281−94. https://doi.org/10.1007/978-4-431-55369-4_15

[31]

King D, Gurtner Y, Firdaus A, Harwood S, Cottrell A. 2016. Land use planning for disaster risk reduction and climate change adaptation: Operationalizing policy and legislation at local levels. International Journal of Disaster Resilience in the Built Environment 7(2):158−72

doi: 10.1108/IJDRBE-03-2015-0009
[32]

Chen TL, Chang HS. 2018. The effects of zoning regulations along fault zone areas on land development and property values after the 921 Chi-Chi Earthquake in Taiwan. Sustainability 10(4):1175

doi: 10.3390/su10041175
[33]

Akhmad A, Hangabei S. 2023. Review of zoning regulations for seismic area on the southwest coast of Sumatra, Indonesia. Yustisia Jurnal Hukum 12(1):60−76

doi: 10.20961/yustisia.v12i1.72856
[34]

Giordano N, De Risi R, Macdonald J, Goda K, Kafodya I, et al. 2023. Implications of building code enforcement and urban expansion on future earthquake loss in East Africa: case study—Blantyre, Malawi. Natural Hazards 117:1083−104

doi: 10.1007/s11069-023-05895-1
[35]

Burby RJ, French SP, Nelson AC. 1998. Plans, code enforcement, and damage reduction: evidence from the northridge earthquake. Earthquake Spectra 14:59−74

doi: 10.1193/1.1585988
[36]

Bouramdane AA. 2023. Cyberattacks in Smart Grids: Challenges and solving the Multi-Criteria Decision-Making for cybersecurity options, including ones that incorporate artificial intelligence, using an analytical hierarchy process. Journal of Cybersecurity and Privacy 3(4):662−705

doi: 10.3390/jcp3040031
[37]

Bouramdane AA. 2023. Optimal water management strategies: paving the way for sustainability in smart cities. Smart Cities 6(5):2849−82

doi: 10.3390/smartcities6050128
[38]

Nyimbili PH, Erden T, Karaman H. 2018. Integration of GIS, AHP and TOPSIS for earthquake hazard analysis. Natural Hazards 92:1523−46

doi: 10.1007/s11069-018-3262-7
[39]

Scholz CH. 1969. Worldwide distribution of earthquakes. Nature 221:165

doi: 10.1038/221165a0
[40]

International Seismological Centre. 2023. Catalogue overview. Version 10. www.isc.ac.uk/iscgem/overview.php

[41]

Stamps DS, Kreemer C, Fernandes R, Rajaonarison TA, Rambolamanana G. 2021. Redefining east African rift system kinematics. Geology 49(2):150−55

doi: 10.1130/G47985.1
[42]

Ndikum EN, Tabod CT, Koumetio F, Tatchum NC, Victor KJ. 2017. Evidence of some major structures underlying the Douala sedimentary sub-basin: West African Coastal Basin. Journal of Geoscience and Environment Protection 5(7):161−72

doi: 10.4236/gep.2017.57013
[43]

Dorbath C, Dorbath L, Fairhead JD, Stuart GW. 1986. A teleseismic delay time study across the Central African Shear Zone in the Adamawa region of Cameroon, West Africa. Geophysical Journal International 86:751−66

doi: 10.1111/j.1365-246X.1986.tb00658.x
[44]

Hamdache M, Peláez JA, Kijko A, Smit A. 2017. Energetic and spatial characterization of seismicity in the Algeria – Morocco region. Natural Hazards 86:273−93

doi: 10.1007/s11069-016-2514-7
[45]

Birouk A, Ibenbrahim A, El Mouraouah A, Kasmi M. 2020. New integrated networks for monitoring seismic and tsunami activity in Morocco. Annals of Geophysics 63(2):SE220

doi: 10.4401/ag-7954
[46]

Jiménez MJ, García-Fernández M. 1999. Seismic hazard assessment in the Ibero-Maghreb region. Annals of Geophysics 42(6):1057−65

doi: 10.4401/ag-3774
[47]

Cherif SE, Chaaraoui A, Chourak M, Oualid Mghazli M, El Omari A, et al. 2022. Urban Seismic Risk Assessment and Damage Estimation: Case of Rif Buildings (North of Morocco). Buildings 12(6):742

doi: 10.3390/buildings12060742
[48]

Tillotson E. 1960. The agadir earthquake of February 29. Nature 186:199

doi: 10.1038/186199a0
[49]

Pfluke JH. 1960. Agadir Earthquake of February 29, 1960 − Seismicity and Geology of the Area. Seismological Research Letters 31(4):46−50

doi: 10.1785/gssrl.31.4.46
[50]

Van der Plas E. 2004. New fund for emergency aid to culture: cultural emergency response. Alexandria 16(3):159−69

doi: 10.1177/095574900401600305
[51]

Moratti G, Piccardi L, Vannucci G, Belardinelli ME, Dahmani M, et al. 2003. The 1755 "Meknes" earthquake (Morocco): field data and geodynamic implications. Journal of Geodynamics 36:305−22

doi: 10.1016/S0264-3707(03)00052-8
[52]

Cherkaoui TE, El Hassani A. 2012. Seismicity and Seismic hazard in Morocco. Bulletin de l’Institut Scientifique, Rabat, section Sciences de la Terre 34:45−55

[53]

Assessment Report. International Federation of Red Cross And Red Crescent Societies (IFRC). 2023. 2023 Morocco Earthquake Disaster Brief. IFRC, Morocco. https://reliefweb.int/report/morocco/2023-morocco-earthquake-disaster-brief-glide-ndeg-eq-2023-000166-mar-mena-region-september-2023

[54]

De Witte M. 2023. Understanding the disproportionate impacts of the Morocco earthquake. https://news.stanford.edu/2023/09/12/understanding-disproportionate-impacts-marrakech-earthquake

[55]

Kottasová I. 2023. Earthquake damages centuries-old sites in marrakech but spares modern city. https://edition.cnn.com/2023/09/10/africa/mosque-earthquake-damage-marrakech-intl/index.

[56]

Newsource NN. 2023. Maps and photos show the impact of the morocco earthquake. https://abc17news.com/news/national-world/cnn-world/2023/09/12/maps-and-photos-show-the-impact-of-the-morocco-earthquake/

[57]

Earthquake Track. 2024. Recent earthquakes near Morocco. https://earthquaketrack.com/p/morocco/recent

[58]

Leatherby L, Hernandez M, Reinhard S, Shao E, Yourish K, et al. 2024. Maps: where the earthquake struck Morocco. www.nytimes.com/interactive/2023/09/09/world/africa/morocco-earthquake-damage.html

[59]

Sadjadi SJ, Karimi M. 2018. Best-worst multi-criteria decision-making method: A robust approach. Decision Science Letters 7(4):323−40

doi: 10.5267/j.dsl.2018.3.003
[60]

Caruso M, Pinho R, Bianchi F, Cavalieri F, Lemmo MT. 2023. Multi-criteria decision-making approach for optimal seismic/energy retrofitting of existing buildings. Earthquake Spectra 39(1):191−217

doi: 10.1177/87552930221141917
[61]

Khamespanah F, Delavar MR, Moradi M, Sheikhian H. 2016. A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing. Geodesy and Cartography 42(2):58−68

doi: 10.3846/20296991.2016.1199139
[62]

Saaty TL. 1982. Decision making for leaders: the analytical hierarchy process for decisions in a complex world. Pittsburgh: University of Pittsburgh. 291 pp.

[63]

Saaty TL. 2008. Decision making with the analytic hierarchy process. International Journal of Services Sciences 1:83−98

doi: 10.1504/IJSSCI.2008.017590
[64]

Bouramdane AA. 2023. Identifying large-scale photovoltaic and concentrated solar power hot spots: Multi-criteria decision-making framework. ICEER 2023 : International Conference on Energy and Environment Research, Paris, France, February 6-7, 2023.

[65]

Bouramdane AA. 2023. Unlocking PV Potential in Climate Action-Challenged Countries. UK: Lambert Academic Press. www.morebooks.shop/shop-ui/shop/product/9786206844372

[66]

Bouramdane AA. 2023. Spatial Suitability Assessment of Onshore Wind Systems Using the Analytic Hierarchy Process. ICEER 2023 : International Conference on Energy and Environment ResearchAt: Istanbul, Türkiye, July 24-25, 2023.

[67]

Bouramdane AA. 2023. Site suitability of offshore wind energy: a combination of geographic referenced information and analytic hierarchy process. ICEER 2023 : International Conference on Energy and Environment Research, Paris, France, February 6−7, 2023.

[68]

Bouramdane AA. 2023. Potential Site for Offshore Floating Photovoltaic Systems in Morocco: Evaluation Criteria Required Considering Climate Change Effects to Achieve the Energy Trilemma. UK: Lambert Academic Publishing.

[69]

Pant S, Garg P, Kumar A, Ram M, Kumar A, et al. 2023. AHP-based multi-criteria decision-making approach for monitoring health management practices in smart healthcare system. International Journal of System Assurance Engineering and Management 15:1−12

[70]

Bouramdane AA. 2023. How to manage vulnerabilities in the renewable energy environment? Leadvent Group. Proc. Renewable Energy Cyber Security Forum, Berlin, Germany, 6−7 June 2023.

[71]

Bouramdane AA. 2023. The role of smart grids in achieving Paris Agreement Goals and determining optimal cybersecurity measures. Énergie/Mines Carrières. https://energiemines.ma/role-of-smart-grids-in-achieving-paris-agreement-goals-and-determining-optimal-cybersecurity-measures/

[72]

Bouramdane AA. 2023. Un Avenir Hydrogéné au Maroc: Dessalement de l’Eau-Défis et Promesses. Énergie/Mines Carrière. https://energiemines.ma/un-avenir-hydrogene-au-maroc-dessalement-de-leau-defis-et-promesses/

[73]

Bouramdane AA. 2024. Crafting an optimal portfolio for sustainable hydrogen production choices in Morocco. Fuel 358:130292

doi: 10.1016/j.fuel.2023.130292
[74]

Bouramdane AA. 2023. Hydrogen production technologies: Modeling, pros and cons, applications, suitable regions, and unveiling sustainability and economics through LCA and LCC. Germany: Lambert Academic Publishing Press.

[75]

Bouramdane AA. 2023. Assessing the environmental impact of hydrogen fuel cell technologies (PEMFCs, SOFCs, AFCs): A cradle-to-gate attributional life cycle analysis. Green Economics 1(2):82−110

[76]

Bouramdane AA. 2023. Production d'hydrogène vert au Maroc: Quelle technologie est la plus adaptée à différents niveaux de pénétration renouvelable. Énergie/Mines Carrières. https://energiemines.ma/production-hydrogene-vert-maroc-technologie-renouvelable/

[77]

Bouramdane AA. 2023. L'oasis d'hydrogène vert pour une agriculture marocaine durable. Le Magazine des Alumni de Polytechnique 790. www.lajauneetlarouge.com/loasis-dhydrogene-vert-pour-une-agriculture-marocaine-durable/

[78]

Bouramdane AA. 2023. Hydrogène, captage et stockage du CO2 et sobriété énergétique: tour d’horizon. Énergie/Mines Carrières. https://energiemines.ma/hydrogene-captage-et-stockage-du-co2-et-sobriete-energetique-tour-dhorizon/

[79]

Saaty TL. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research 48(1):9−26

doi: 10.1016/0377-2217(90)90057-I
[80]

Saaty TL. 1980. The analytic hierarchy process: planning, priority setting, resource allocation. New York, US: McGraw-Hill.

[81]

Saaty RW. 1987. The analytic hierarchy process—what it is and how it is used. Mathematical Modelling 9(3−5):161−76

doi: 10.1016/0270-0255(87)90473-8
[82]

Saaty TL. 1988. What is the analytic hierarchy process? Mathematical models for decision support. In Mathematical Models for Decision Support. NATO ASI Series, eds. Mitra G, Greenberg HJ, Lootsma FA, Rijkaert MJ, Zimmermann HJ. vol 48. Berlin, Heidelberg: Springer. pp. 109−21. https://doi.org/10.1007/978-3-642-83555-1_5

[83]

Saaty TL. 2001. Fundamentals of decision making and priority theory with the analytic hierarchy process. Vol. 6. New York: McGraw Hill Publishers.

[84]

Saaty TL. 1977. A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology 15(3):234−81

doi: 10.1016/0022-2496(77)90033-5
[85]

Harirchian E, Jadhav K, Mohammad K, Aghakouchaki Hosseini SE, Lahmer T. 2020. A comparative study of MCDM methods integrated with rapid visual seismic vulnerability assessment of existing RC structures. Applied Sciences 10(18):6411

doi: 10.3390/app10186411
[86]

Opabola EA, Galasso C. 2024. Informing disaster-risk management policies for education infrastructure using scenario-based recovery analyses. Nature Communications 15:325

doi: 10.1038/s41467-023-42407-y
[87]

Abdullah MF, Siraj S, Hodgett RE. 2021. An overview of multi-criteria decision analysis (MCDA) application in managing water-related disaster events: analyzing 20 years of literature for flood and drought events. Water 13(10):1358

doi: 10.3390/w13101358
[88]

United Nations. 2018. UN International Strategy for Disaster Reduction (UNISDR). https://sdgs.un.org/statements/un-international-strategy-disaster-reduction-unisdr-8377

[89]

Aronsson-Storrier M. 2021. UN office for disaster risk reduction (2019). Yearbook of International Disaster Law Online 2(1):377−82

doi: 10.1163/26662531_00201_016
[90]

Bouramdane AA. 2023. Enhancing disaster management in smart cities through MCDM-AHP analysis amid 21st century challenges. Information System and Smart City 3(1):189

doi: 10.59400/issc.v3i1.189
[91]

Bouramdane AA. 2024. Morocco's Earthquake Risk Management: A Multi-Criteria Decision-Making Approach and Implications for the Recent Japan Earthquake. EGU General Assembly, Austria, 2024. pp. 14-19. https://doi.org/10.5194/egusphere-egu24-6158

[92]

Bouramdane AA. 2024. Natural hazards in electricity grids: from landscape dynamics to optimal mitigation and adaptation approaches. Emergency Management Science and Technology 4:e007

doi: 10.48130/emst-0024-0003
[93]

Tian Y, Pang X, Su Y, Han D, Du Y. 2023. Cross-departmental collaboration approach for earthquake emergency response based on synchronous intersection between traditional and logical Petri nets. Electronics 12(5):1207

doi: 10.3390/electronics12051207
[94]

Uyeda S, Nagao T. 2018. International cooperation in pre-earthquake studies: history and new directions. Pre-Earthquake Processes: A Multidisciplinary Approach to Earthquake Prediction Studies, eds. Ouzounov D, Pulinets S, Hattori K, Taylor P. USA: American Geophysical Union. pp. 1−6. https://doi.org/10.1002/9781119156949.ch1

[95]

Murphy RR. 2014. International cooperation in deploying robots for disasters: lessons for the future from the Great East Japan Earthquake. Journal of the Robotics Society of Japan 32(2):104−9

doi: 10.7210/jrsj.32.104
[96]

Nainwa A. 2022. An Improved Monitoring System Via the Integration of Structural Health Monitoring and Earthquake Emergency Alert Technologies. Mathematical Statistician and Engineering Applications 71(2):564−73

doi: 10.17762/msea.v71i2.2136
[97]

Sutrisno D, Suwarno Y, Turmudi, Widodo A, Cipta A, et al. 2022. Cascading disasters triggered by earthquake hazards: An infrastructure resilience approach. IOP Conference Series: Earth and Environmental Science 1109(1):012003

doi: 10.1088/1755-1315/1109/1/012003
[98]

Pribadi KS, Abduh M, Wirahadikusumah RD, Hanifa NR, Irsyam M, et al. 2021. Learning from past earthquake disasters: The need for knowledge management system to enhance infrastructure resilience in Indonesia. International Journal of Disaster Risk Reduction 64:102424

doi: 10.1016/j.ijdrr.2021.102424
[99]

Rahman MM, Asikunnaby, Chaity NJ, Abdo HG, Almohamad H, et al. 2023. Earthquake preparedness in an urban area: the case of Dhaka city, Bangladesh. Geoscience Letters 10:27

doi: 10.1186/s40562-023-00281-y
[100]

Bendimerad F. 2021. The role of earthquake insurance in earthquake risk reduction and resilience building. In Advances in Assessment and Modeling of Earthquake Loss. Springer Tracts in Civil Engineering , eds. Akkar S, Ilki A, Goksu C, Erdik M. Cham: Springer International Publishing. pp. 277−86. https://doi.org/10.1007/978-3-030-68813-4_12

[101]

Sadeghi M, Shahanaghi K, Heydari M. 2016. Identifying and ranking earthquake disaster prevention strategies in Tehran. International Journal of Management and Decision Making 15:16−37

[102]

Laure F, Francesco F, Rémy B. 2022. Efficacy and usefulness of an independent public earthquake early warning system: a case study—the earthquake network initiative in Peru. Seismological Research Letters 93(2A):827−39

doi: 10.1785/0220210233
[103]

Waters D. 2007. Supply chain risk management: vulnerability and resilience in logistics. England: Kogan Page Publishers. https://api.semanticscholar.org/CorpusID:167004332

[104]

Donà M, Bizzaro L, Carturan F, da Porto F. 2019. Effects of business recovery strategies on seismic risk and cost-effectiveness of structural retrofitting for business enterprises. Earthquake Spectra 35(4):1795−819

doi: 10.1193/041918EQS098M
[105]

Suzuki S, Sato Y, Yokoishi T, Mitsugi J. 2014. A cost effective and sustainable relief material supply visibility system for devastated areas. 2014 IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea (South), 6−8 March 2014. USA: IEEE. pp. 271−76. https://doi.org/10.1109/WF-IoT.2014.6803171

[106]

Frigerio I, Zanini F, Mattavelli M, De Amicis M. 2019. Understanding the interacting factors that influence social vulnerability: A case study of the 2016 central Italy earthquake. Disasters 43(4):867−90

doi: 10.1111/disa.12403
[107]

D'Urso MG, Masi D, Zuccaro G, De Gregorio D. 2018. Multicriteria fuzzy analysis for a GIS-based management of earthquake scenarios. Computer‐Aided Civil and Infrastructure Engineering 33(2):165−79

doi: 10.1111/mice.12335
[108]

Yanuarni E, Iqbal M, Astuti ES, Mawardi MK, Alfisyahr R. 2023. Determinants of business recovery: The role of government support as moderator (a study on tourism SMEs affected by Lombok earthquake, Indonesia). Human Systems Management 43:79−97

doi: 10.3233/hsm-220171
[109]

Forino G. 2015. Disaster recovery: narrating the resilience process in the reconstruction of L’Aquila (Italy). Geografisk Tidsskrift-Danish Journal of Geography 115(1):1−13

doi: 10.1080/00167223.2014.973056
[110]

Guerrero-Miranda P, Luque González A. 2021. Social responsibility, sustainability, and public policy: The lessons of debris management after the Manabí Earthquake in Ecuador. International Journal of Environmental Research and Public Health 18(7):3494

doi: 10.3390/ijerph18073494
[111]

Corpus RM, Bayani M, Almacha A, Tana KB. 2023. Mitigating the environmental impact of construction projects through effective pollution management strategies. Proc. 18th International Conference on Environmental Science and Technology, Greece, 2023. Rhodes, Greece: Global NEST International Conference on Environmental Science & Technology. https://api.semanticscholar.org/CorpusID:261322013

[112]

Courbage C, Mahul O. 2013. Promoting better understanding on sustainable disaster risk management strategies. The Geneva Papers on Risk and Insurance - Issues and Practice 38:401−405

doi: 10.1057/gpp.2013.20
[113]

Burnham GM. 2006. Preventing disaster: Realizing vulnerabilities and looking forward. Harvard international review 28(1):84−86

[114]

Agarwal A. 2008. Decision making under epistemic uncertainty: An application to seismic design. Thesis. Massachusetts Institute of Technology, U.S. http://hdl.handle.net/1721.1/43052

[115]

Molina Hutt C, Vahanvaty T, Kourehpaz P. 2022. An analytical framework to assess earthquake-induced downtime and model recovery of buildings. Earthquake Spectra 38(2):1283−320

doi: 10.1177/87552930211060856
[116]

Adigüzel F, Kleijnen M, Erkan BBB, Yozgatligil CT. 2019. Identifying non-adopter consumer segments: an empirical study on earthquake insurance adoption in Turkey. Journal of Consumer Affairs 53(2):662−85

doi: 10.1111/joca.12217
[117]

Shah I, Mahmood T, Khan SA, Elahi N, Shahnawaz M, et al. 2022. Inter-agency collaboration and disaster management: A case study of the 2005 earthquake disaster in Pakistan. Jàmbá - Journal of Disaster Risk Studies 14(1):a1088

doi: 10.4102/jamba.v14i1.1088
[118]

Howes M, Tangney P, Reis K, Grant-Smith D, Heazle M, et al. 2015. Towards networked governance: improving interagency communication and collaboration for disaster risk management and climate change adaptation in Australia. Journal of Environmental Planning and Management 58(5):757−76

doi: 10.1080/09640568.2014.891974
[119]

Suzuki S, Hayashi H. 2016. Development and Utilization of Urban Resilience Geoportal Online. Japan Geoscience Union. https://confit.atlas.jp/guide/event-img/jpgu2016/SSS33-03/public/pdf?type=in

[120]

Ghosh A, Mal P, Majumdar A. 2019. Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). In Advanced Optimization and Decision-Making Techniques in Textile Manufacturing. Vol. 1. Boca Raton: CRC Press. pp. 29. https://doi.org/10.1201/9780429504419

[121]

Mesran M, Ginting G, Suginam S, Rahim R. 2017. Implementation of elimination and choice expressing reality (ELECTRE) method in selecting the best lecturer (Case Study STMIK BUDI DARMA). International Journal of Engineering Research & Technology (IJERT) 6(2

[122]

Brans JP, Vincke P. 1985. Note—A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making. Management Science 31(6):647−57

doi: 10.1287/mnsc.31.6.647
[123]

Taherdoost H. 2023. Analysis of simple additive weighting method (SAW) as a multiattribute decision-making technique: a step-by-step guide. Journal of Management Science & Engineering Research 6(1):21−24

doi: 10.30564/jmser.v6i1.5400
[124]

Scibilia F. 2021. Rebuilding after the earthquake: Earthquake-resistant construction techniques in Sicily in the 18th and 19th centuries. History of Construction Cultures, eds. Mascarenhas-Mateus J, Pires AP. Vol. 2. London: CRC Press. pp. 637−44. https://doi.org/10.1201/9781003173434

[125]

Chang KH, Wu YZ, Su WR, Lin LY. 2023. A simulation evacuation framework for effective disaster preparedness strategies and response decision making. European Journal of Operational Research 313:733−46

doi: 10.1016/j.ejor.2023.08.048
[126]

Bouramdane AA. 2024. Assessment of CMIP6 multi-model projections worldwide: Which regions are getting warmer and are going through a drought in Africa and Morocco? What changes from CMIP5 to CMIP6? Sustainability 15(1):690

doi: 10.3390/su15010690
[127]

Bouramdane AA. 2023. Determining vulnerable areas to warming and drought in Africa and Morocco based on CMIP6 projections: towards the implementation of mitigation and adaptation measures. Proc. EGU General Assembly, Vienna, Austria & Online, 23–28 April 2023. https://doi.org/10.5194/egusphere-egu23-2456

[128]

Bouramdane AA. 2023. Lieux Les Plus Sensibles Au Changement Climatique Nécessitant des Mesures d’Atténuation et d’Adaptation. Énergie/Mines Carrières. https://energiemines.ma/lieux-les-plus-sensibles-au-changement-climatique-necessitant-des-mesures-dattenuation-et-dadaptation/

[129]

Bouramdane AA. 2022. Chaleur Caniculaire, Incendies Gigantesques à Répétition: Des Signes du Changement Climatique. Énergie/Mines Carrières. https://energiemines.ma/chaleur-caniculaire-incendies-gigantesques-a-repetition-des-signes-du-changement-climatique/

[130]

Bouramdane AA. 2022. Sécheresse: L'extrême Va-t-il Progressivement Devenir la Norme. Énergie/Mines Carrières. https://energiemines.ma/secheresse-lextreme-va-t-il-progressivement-devenir-la-norme/

[131]

Bouramdane AA. 2023. Quelle est la Relation entre l’Agriculture et le Changement Climatique. Énergie/Mines Carrières.

[132]

Bouramdane AA. 2023. Climate Risks and Energy Transition in Morocco: Vulnerability to Climate Losses and Damages and Uncertainty in the Renewable Electricity Mix Under Different Penetration. Germany: Lambert Academic Publishing Press.

[133]

Bouramdane AA. 2023. Solutions pour réduire la pression sur l'eau. Énergie/Mines Carrières. https://energiemines.ma/solutions-pour-rerduire-pression-eau/

[134]

Bouramdane AA. 2023. Préservation des Ressources d’Eau et Transition Énergétique: Point sur le Photovoltaïque Flottant. Énergie/Mines Carrières. https://energiemines.ma/preservation-des-ressources-deau-et-transition-energetique-point-sur-le-photovoltaique-flottant/

[135]

Bouramdane AA. 2021. Scenarios of Large-Scale Solar Integration with Wind in Morocco: Impact of Storage, Cost, Spatio-Temporal Complementarity and Climate Change. Thesis. Institut polytechnique de Paris, France.

[136]

Bouramdane AA. 2021. RCP 8.5 Climate Change Versus Cost Effect on Optimal Scenario Mixes of Variable and Dispatchable Technologies in Morocco: Climate Model Inter-Comparison. Thesis. Institut Polytechnique de Paris, France.

[137]

Bouramdane AA. Choix Optimal de Technologies Renouvelables au Maroc en Fonction des Scénarios de Pénétration et du Climat. La Revue de l’Énergie.

[138]

Bouramdane AA. 2022. Pourquoi l'Atténuation et l'Adaptation aux Changements Climatiques sont Complémentaires. Énergie/Mines Carrières. https://energiemines.ma/pourquoi-lattenuation-et-ladaptation-aux-changements-climatiques-sont-complementaires/

[139]

Bouramdane, AA. 2023. Climate Resilience: Insights from Global Negotiations and Morocco’s Path to Sustainability. Germany: Lambert Academic Publishing Press.

[140]

Bouramdane AA. 2023. Africa's Vulnerability and the Road Ahead from COP27 to COP28. Énergie/Mines Carrières. https://energiemines.ma/africas-vulnerability-and-the-road-ahead-from-cop27-to-cop28/

[141]

Bouramdane AA. 2023. Morocco's Road to a Climate-Resilient Energy Transition: Emissions Drivers, Solutions, and Barriers. https://doi.org/10.13140/RG.2.2.30108.77442/1

[142]

Gray BJ, Long MA, Gill DA, Dunlap RE, Straub AM. 2019. Politics, climate change, and earthquakes: Public perceptions of oil and gas impacts in Oklahoma. Energy Research & Social Science 58:101251

doi: 10.1016/j.erss.2019.101251
[143]

Gulter IŞ. 2022. Beyond scientific facts: climate change crisis in earthquakes in London. Journal of Literature and Humanities 1(68):120−26

doi: 10.5152/AUJFL.2022.931912
[144]

Jena R, Shanableh A, Al-Ruzouq R, Gibril MBA. 2023. Earthquake Risk Assessment Using Xtreme Learning Machine and Remote Sensing. Proc. 2023 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 20−23 February 2023. USA: IEEE. https://doi.org/10.1109/ASET56582.2023.10180748

[145]

Yavuz Kumlu KB, Tüdeş Ş. 2019. Determination of earthquake-risky areas in Yalova City Center (Marmara region, Turkey) using GIS-based multicriteria decision-making techniques (analytical hierarchy process and technique for order preference by similarity to ideal solution). Natural Hazards 96:999−1018

doi: 10.1007/s11069-019-03583-7
[146]

Sotoudeh-Anvari A, Sadjadi SJ, Hadji Molana SM, Sadi-Nezhad S. 2019. A stochastic multi-objective model based on the classical optimal search model for searching for the people who are lost in response stage of earthquake. Scientia Iranica 26(3):1842−64

doi: 10.24200/sci.2018.20226
[147]

Hadavi F, Zamani M, Movasati M, Koohgard K, Hadavi M. 2014. Optimal site selection for temporary housing after an earthquake in urban areas using multiple criteria decision making methods and GIS (a case study of municipal district 6, Tehran metropolis). Journal of Applied Environmental and Biological Sciences 5(1):6−13

[148]

Bennani-Chraïbi M. 2017. Beyond structure and contingency: Toward an interactionist and sequential approach to the 2011 uprisings. Middle East Critique 26(4):373−95

doi: 10.1080/19436149.2017.1363531
[149]

Sepúlveda I, Haase JS, Liu PLF, Grigoriu M, Winckler P. 2021. Non-stationary probabilistic tsunami hazard assessments incorporating climate-change-driven sea level rise. Earth's Future 9(6):e2021EF002007

doi: 10.1029/2021EF002007
[150]

Morović M. 2008. Natural and environmental risks in marine and coastal areas. In Integration of Information for Environmental Security. NATO Science for Peace and Security Series C: Environmental Security, eds. Coskun HG, Cigizoglu HK, Maktav MD. Dordrecht: Springer Press. pp. 291−300. https://doi.org/10.1007/978-1-4020-6575-0_20

[151]

Trifonov BA, Milanovsky SY, Nesinov VV. 2022. Estimation of Seismic Impacts Under Conditions of Permafrost Degradation. Bulletin of Kamchatka Regional Association «Educational-Scientific Center»: Earth Sciences 56(4):59−74

doi: 10.31431/1816-5524-2022-4-56-59-74
[152]

Warrick JA, East AE, Dow H. 2023. Fires, floods and other extreme events–How watershed processes under climate change will shape our coastlines. Cambridge Prisms: Coastal Futures 1:e2

doi: 10.1017/cft.2022.1
[153]

NASA. 2024. Sea level projection tool. https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool.

[154]

Collett TS, Lee MW, Agena WF, Miller JJ, Lewis KA, et al. 2011. Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope. Marine and Petroleum Geology 28(2):279−94

doi: 10.1016/j.marpetgeo.2009.12.001
[155]

Mavrouli M, Mavroulis S, Lekkas E, Tsakris A. 2023. The impact of earthquakes on public health: A narrative review of infectious diseases in the post-disaster period aiming to disaster risk reduction. Microorganisms 11(2):419

doi: 10.3390/microorganisms11020419
[156]

Aryal P. 2023. Occurrence of disaster events and their impact in Nepal: role of government and civil society organizations to reduce the disaster risks. Nepal Journal of Multidisciplinary Research 6(1):88−101

doi: 10.3126/njmr.v6i1.54355
[157]

Allen P, Neil B. 2013. Crisis in Late Antiquity, Vol. 121, Dutch: Brill Publishers. pp. 1-10.

[158]

Dekens J, Siddiqi A. 2009. Local Knowledge on Disaster Preparedness With examples drawn from experiences on droughts and flash floods in Herat Province, Afghanistan.

[159]

Sett D, Sandholz S. 2020. Adaptive Social Protection - an innovative approach to build resilience in a multi-hazard environment. EGU2020-19463. Proc. EGU General Assembly, Online, 4–8 May 2020. https://doi.org/10.5194/egusphere-egu2020-19463

[160]

Merin O, Yitzhak A, Bader T. 2015. Medicine in a disaster area: lessons from the 2015 earthquake in Nepal. JAMA Internal Medicine 175(9):1437−38

doi: 10.1001/jamainternmed.2015.3985
[161]

Poudel BR, Fitzgerald G, Clark M, Mehta A, Poudyal M. 2015. Disaster management in Nepal: media engagement in the post-2015 framework for disaster risk reduction. Planet@ risk 3(2):209−21

[162]

Dugar N, Karanjit S, Khatiwada NR, Shakya SM, Ghimire A. 2020. Post-disaster waste management: lessons learnt from 2015 Nepal earthquake. Sustainable Waste Management: Policies and Case Studies, ed. Ghosh S. Singapore: Springer. pp. 465−83. https://doi.org/10.1007/978-981-13-7071-7_41

[163]

Pearson D, Ebisu K, Wu X, Basu R. 2019. A review of coccidioidomycosis in California: exploring the intersection of land use, population movement, and climate change. Epidemiologic Reviews 41(1):145−57

doi: 10.1093/epirev/mxz004
[164]

Kavvada I, Moura S, Horvath A. 2022. Aligning sustainability and regional earthquake hazard mitigation planning: Integrating greenhouse gas emissions and vertical equity. Environmental Research: Infrastructure and Sustainability 2(4):045013

doi: 10.1088/2634-4505/aca9f3
[165]

Bloch DA. 2011. Financing adaptation to climate change with climate derivatives. SSRN Electronic Journal

doi: 10.2139/ssrn.1861126
[166]

Chowdhuri A, Gupta CK. 2023. Gauging the Assessment of Some Anthropogenic Factors Driving Climate-Change. Current World Environment 18(2):614−636

doi: 10.12944/CWE.18.2.16
[167]

Rivera PC, Khan TMA. 2012. Discovery of the major mechanism of global warming and climate change. Journal of Basic and Applied Sciences 8:59−73

[168]

Sandholz S. 2016. Potential for ecosystem-based disaster risk reduction and climate change adaptation in the urban landscape of Kathmandu Valley, Nepal. In Ecosystem-Based Disaster Risk Reduction and Adaptation in Practice. Advances in Natural and Technological Hazards Research, eds. Renaud F, Sudmeier-Rieux K, Estrella M, Nehren U. Cham: Springer. pp. 335−60. https://doi.org/10.1007/978-3-319-43633-3_15

[169]

Nath B, Wang Z, Ge Y, Islam K, Singh RP, et al. 2020. Land use and land cover change modeling and future potential landscape risk assessment using Markov-CA model and analytical hierarchy process. ISPRS International Journal of Geo-Information 9(2):134

doi: 10.3390/ijgi9020134