[1] |
de Boer ME, de Boer TE, Mariën J, Timmermans MJTN, Nota B, et al. 2009. Reference genes for QRT-PCR tested under various stress conditions in Folsomia candida and Orchesella cincta (Insecta, Collembola). BMC Molecular Biology 10:54 doi: 10.1186/1471-2199-10-54 |
[2] |
Qian M, Yang N, Zhu CH, Xia Y. 2021. Selection and validation of reference genes for real-time fluorescence quantitative PCR in mung beans. Plant Physiology Journal 57(11):2203−12 doi: 10.13592/j.cnki.ppj.2021.0171 |
[3] |
Lin H, Qiu H, Cheng Y, Liu M, Chen M, et al. 2021. Gelsemium elegans Benth: chemical components, pharmacological effects, and toxicity mechanisms. Molecules 26(23):7145 doi: 10.3390/molecules26237145 |
[4] |
Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA. 2008. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biology 8:131 doi: 10.1186/1471-2229-8-131 |
[5] |
Ye Y, Lu Y, Wang G, Liu Y, Zhang Y, et al. 2021. Stable reference gene selection for qRT-PCR normalization in strawberry (Fragaria × ananassa) leaves under different stress and light-quality conditions. Horticulturae 7:452 doi: 10.3390/horticulturae7110452 |
[6] |
Xia W, Rui W, Zhao W, Sheng S, Lei L, et al. 2018. Stable isotope labeling and 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside biosynthetic pathway characterization in Fallopia multiflora. Planta 247(3):613−23 doi: 10.1007/s00425-017-2797-2 |
[7] |
Guo J, Ling H, Wu Q, Xu L, Que Y. 2014. The choice of reference genes for assessing gene expression in sugarcane under salinity and drought stresses. Scientific Reports 4:7042 doi: 10.1038/srep07042 |
[8] |
Ma L, Wu J, Qi W, Coulter JA, Fang Y, et al. 2020. Screening and verification of reference genes for analysis of gene expression in winter rapeseed (Brassica rapa L.) under abiotic stress. PLoS One 15(9):e0236577 doi: 10.1371/journal.pone.0236577 |
[9] |
Yi XZ, Wu L, Xiang L, Wang MY, Chen SL, et al. 2022. Screening of reference genes for quantitative real-time PCR in Artemisia argyi. China Journal of Chinese Materia Medica 47(3):659−67 doi: 10.19540/j.cnki.cjcmm.20210919.101 |
[10] |
Wang H, Cai QZ, Liu L, Yang Q, Zhou LY. 2021. Reference gene screening for real-time quantitative PCR in Polygonum Multiflorum. China Journal of Chinese Materia Medica 46(1):80−85 doi: 10.19540/j.cnki.cjcmm.20201024.103 |
[11] |
Zhu X, Wang B, Wang X, Wei X. 2021. Screening of stable internal reference gene of Quinoa under hormone treatment and abiotic stress. Physiology and Molecular Biology of Plants 27(11):2459−70 doi: 10.1007/s12298-021-01094-z |
[12] |
Garrido J, Aguilar M, Prieto P. 2020. Identification and validation of reference genes for RT-qPCR normalization in wheat meiosis. Scientific Reports 10:2726 doi: 10.1038/s41598-020-59580-5 |
[13] |
Editorial Committee of Flora of China, Chinese Academy of Sciences. 1992. Flora of China. Beijing: Science Press. 61:251−53. |
[14] |
Wang L, Ding YY, Wu YQ, Zhao C, Wu J, et al. 2023. Koumine ameliorates neuroinflammation by regulating microglia polarization via activation of Nrf2/HO-1 pathway. Biomedicine & Pharmacotherapy 167:115608 doi: 10.1016/j.biopha.2023.115608 |
[15] |
Xu YK, Liao SG, Na Z, Hu HB, Li Y, et al. 2012. Gelsemium alkaloids, immunosuppressive agents from Gelsemium elegans. Fitoterapia 83:1120−24 doi: 10.1016/j.fitote.2012.04.023 |
[16] |
Xu Y, Qiu HQ, Liu H, Liu M, Huang ZY, et al. 2012. Effects of koumine, an alkaloid of Gelsemium elegans Benth., on inflammatory and neuropathic pain models and possible mechanism with allopregnanolone. Pharmacology Biochemistry & Behavior 101:504−14 doi: 10.1016/j.pbb.2012.02.009 |
[17] |
Liu M, Huang HH, Yang J, Su YP, Lin HW, et al. 2013. The active alkaloids of Gelsemium elegans Benth. are potent anxiolytics. Psychopharmacology 225:839−51 doi: 10.1007/s00213-012-2867-x |
[18] |
Que W, Wu Z, Chen M, Zhang B, You C, et al. 2022. Molecular mechanism of Gelsemium elegans (Gardner and Champ.) Benth. against neuropathic pain based on network pharmacology and experimental evidence. Frontiers in Pharmacology 12:792932 doi: 10.3389/fphar.2021.792932 |
[19] |
Xu WB, Tang MH, Long JY, Wang WW, Qin JY, et al. 2023. Antinociceptive effect of gelsenicine, principal toxic alkaloids of gelsemium, on prostaglandin E2-induced hyperalgesia in mice: comparison with gelsemine and koumine. Biochemical and Biophysical Research Communications 681:55−61 doi: 10.1016/j.bbrc.2023.09.037 |
[20] |
Zuo MT, Liu YC, Sun ZL, Lin L, Tang Q, et al. 2021. An integrated strategy toward comprehensive characterization and quantification of multiple components from herbal medicine: An application study in Gelsemium elegans. Chinese Herbal Medicines 13:17−32 doi: 10.1016/j.chmed.2020.06.002 |
[21] |
Jin GL, Su YP, Liu M, Xu Y, Yang J, et al. 2014. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)-a review of their phytochemistry, pharmacology, toxicology and traditional use. The Journal of Ethnopharmacology 152:33−52 doi: 10.1016/j.jep.2014.01.003 |
[22] |
Yang K, Long XM, Cao JJ, Li YJ, Wu Y, et al. 2019. An analytical strategy to explore the multicomponent pharmacokinetics of herbal medicine independently of standards: Application in Gelsemium elegans extracts. Journal of Pharmaceutical and Biomedical Analysis 176:112833 doi: 10.1016/j.jpba.2019.112833 |
[23] |
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology 3:research0034.1 doi: 10.1186/gb-2002-3-7-research0034 |
[24] |
Hossain MS, Ahmed R, Haque MS, Alam MM, Islam MS. 2019. Identification and validation of reference genes for real-time quantitative RT-PCR analysis in jute. BMC Molecular Biology 20:13 doi: 10.1186/s12867-019-0130-2 |
[25] |
Reddy DS, Bhatnagar-Mathur P, Reddy PS, Cindhuri KS, Ganesh AS, et al. 2016. Identification and validation of reference genes and their impact on normalized gene expression studies across cultivated and wild Cicer species. PLoS One 11:e148451 doi: 10.1371/journal.pone.0148451 |
[26] |
Wang M, Lu S. 2016. Validation of suitable reference genes for quantitative gene expression analysis in Panax ginseng. Frontiers in Plant Science 6:1259 doi: 10.3389/fpls.2015.01259 |
[27] |
Silver N, Best S, Jiang J, Thein SL. 2006. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Molecular Biology 7:33 doi: 10.1186/1471-2199-7-33 |
[28] |
Xie F, Xiao P, Chen D, Xu L, Zhang B. 2012. miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Molecular Biology 80:75−84 doi: 10.1007/s11103-012-9885-2 |
[29] |
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8 doi: 10.1006/meth.2001.1262 |
[30] |
Yang Z, Chen Y, Hu B, Tan Z, Huang B. 2015. Identification and validation of reference genes for quantification of target gene expression with quantitative real-time PCR for tall fescue under four abiotic stresses. PLoS One 10:e0119569 doi: 10.1371/journal.pone.0119569 |
[31] |
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. 2004. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnology Letters 26:509−15 doi: 10.1023/B:BILE.0000019559.84305.47 |
[32] |
Bustin SA, Benes V, Nolan T, Pfaffl MW. 2005. Quantitative real-time RT-PCR - a perspective. The Journal of Molecular Endocrinology 34:597−601 doi: 10.1677/jme.1.01755 |
[33] |
Li W, Qian YQ, Han L, Liu JX, Li ZJ, et al. 2015. Validation of candidate reference genes for gene expression normalization in Buchloe dactyloides using quantitative real-time RT-PCR. Scientia Horticulturae 197:99−106 doi: 10.1016/j.scienta.2015.09.003 |
[34] |
Samanta P, Sadhukhan S, Basu A. 2015. Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. Planta 241:371−85 doi: 10.1007/s00425-014-2187-y |
[35] |
Andersen CL, Jensen JL, Ørntoft TF. 2004. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research 64(15):5245−50 doi: 10.1158/0008-5472.CAN-04-0496 |
[36] |
Fleige S, Pfaffl MW. 2006. RNA integrity and the effect on the real-time qRT-PCR performance. Molecular Aspects of Medicine 27:126−39 doi: 10.1016/j.mam.2005.12.003 |
[37] |
Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−8 doi: 10.1038/nprot.2008.73 |
[38] |
Liu H, Liu J, Chen P, Zhang X, Wang K, et al. 2023. Selection and validation of optimal RT-qPCR reference genes for the normalization of gene expression under different experimental conditions in Lindera megaphylla. Plants 12:2185 doi: 10.3390/plants12112185 |
[39] |
Manoli A, Sturaro A, Trevisan S, Quaggiotti S, Nonis A. 2012. Evaluation of candidate reference genes for qPCR in maize. The Journal of Plant Physiology 169:807−15 doi: 10.1016/j.jplph.2012.01.019 |
[40] |
Ling H, Wu Q, Guo J, Xu L, Que Y. 2014. Comprehensive selection of reference genes for gene expression normalization in sugarcane by real time quantitative RT-PCR. PLoS One 9:e97469 doi: 10.1371/journal.pone.0097469 |
[41] |
Chen MD, Wang B, Li YP, Zeng MJ, Liu JT, et al. 2021. Reference gene selection for qRT-PCR analyses of luffa (Luffa cylindrica) plants under abiotic stress conditions. Scientific Reports 11:3161 doi: 10.1038/s41598-021-81524-w |
[42] |
Dudziak K, Sozoniuk M, Szczerba H, Kuzdraliński A, Kowalczyk K, et al. 2020. Identification of stable reference genes for qPCR studies in common wheat (Triticum aestivum L.) seedlings under short-term drought stress. Plant Methods 16:58 doi: 10.1186/s13007-020-00601-9 |
[43] |
Zhang Y, Zhang Z, Ren M, Liu X, Zhou X, et al. 2022. Selection of reference genes for RT-qPCR analysis in the hawthorn spider mite, Amphitetranychus viennensis (Acarina: Tetranychidae), under acaricide treatments. Journal of Economic Entomology 115(2):662−70 doi: 10.1093/jee/toac019 |
[44] |
Xiang BB, Li XX, Wang Y, Tian XX, Yang L, et al. 2017. Cloning and expression of geranyl pyrophosphate synthase gene in Swertia mussotii. Chinese Traditional and Herbal Drugs 48(5):962−70 doi: 10.7501/j.issn.0253-2670.2017.05.021 |
[45] |
Müller M, Munné-Bosch S. 2015. Ethylene response factors: a key regulatory hub in hormone and stress signaling. Plant Physiology 169:32−41 doi: 10.1104/pp.15.00677 |
[46] |
Licausi F, Ohme-Takagi M, Perata P. 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytologist 199:639−49 doi: 10.1111/nph.12291 |
[47] |
Wang C, Fourdin R, Quadrado M, Dargel-Graffin C, Tolleter D, et al. 2020. Rerouting of ribosomal proteins into splicing in plant organelles. PNAS 117:29979−87 doi: 10.1073/pnas.2004075117 |
[48] |
You CH, Liu AY, Zhang T, Zhao YF, Cui TZ, et al. 2022. Identification of GeERF transcription factors in Gelsmium elegans and their expression under low temperature stress. China Journal of Chinese Materia Medica 47(18):4908−18 doi: 10.19540/j.cnki.cjcmm.20220708.101 |
[49] |
Zhang Y, Ming R, Khan M, Wang Y, Dahro B, et al. 2022. ERF9 of Poncirus trifoliata (L.) Raf. undergoes feedback regulation by ethylene and modulates cold tolerance via regulating a glutathione S-transferase U17 gene. Plant Biotechnology Journal 20:183−200 doi: 10.1111/pbi.13705 |
[50] |
Wang Y, Mostafa S, Zeng W, Jin B. 2021. Function and mechanism of jasmonic acid in plant responses to abiotic and biotic stresses. International Journal of Molecular Sciences 22(16):8568 doi: 10.3390/ijms22168568 |
[51] |
Jeyasri R, Muthuramalingam P, Karthick K, Shin H, Choi SH, et al. 2023. Methyl jasmonate and salicylic acid as powerful elicitors for enhancing the production of secondary metabolites in medicinal plants: an updated review. Plant Cell Tissue and Organ Culture 153(3):447−58 doi: 10.1007/s11240-023-02485-8 |
[52] |
Zheng H, Fu X, Shao J, Tang Y, Yu M, et al. 2023. Transcriptional regulatory network of high-value active ingredients in medicinal plants. Trends in Plant Science 28(4):429−46 doi: 10.1016/j.tplants.2022.12.007 |