[1]

Kesh H, Kaushik P. 2021. Advances in melon (Cucumis melo L.) breeding: an update. Scientia Horticulturae 282:110045

doi: 10.1016/J.SCIENTA.2021.110045
[2]

Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, et al. 2018. Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Frontiers in Plant Science 9:1689

doi: 10.3389/fpls.2018.01689
[3]

Rodriguez-Casado A. 2016. The health potential of fruits and vegetables phytochemicals: notable examples. Critical Reviews in Food Science and Nutrition 56:1097−107

doi: 10.1080/10408398.2012.755149
[4]

Zhao L, Zhang B, Huang H, Huang W, Zhang Z, et al. 2023. Metabolomic and transcriptomic analyses provide insights into metabolic networks during cashew fruit development and ripening. Food Chemistry 404:134765

doi: 10.1016/j.foodchem.2022.134765
[5]

Hou L, Li M, Zhang C, Liu N, Liu X, et al. 2022. Comparative transcriptomic analyses of different jujube cultivars reveal the co-regulation of multiple pathways during fruit cracking. Genes 13:105

doi: 10.3390/genes13010105
[6]

Chen Y, Ge Y, Zhao J, Wei M, Li C, et al. 2019. Postharvest sodium nitroprusside treatment maintains storage quality of apple fruit by regulating sucrose metabolism. Postharvest Biology and Technology, 154:115−120

doi: 10.1016/j.postharvbio.2019.04.024
[7]

Duan B, Ge Y, Li C, Gao X, Tang Q, et al. 2019. Effect of exogenous ATP treatment on sucrose metabolism and quality of Nanguo pear fruit. Scientia Horticulturae 249:71−76

doi: 10.1016/j.scienta.2019.01.047
[8]

Moing A, Allwood JW, Aharoni A, Baker J, Beale MH, et al. 2020. Comparative metabolomics and molecular phylogenetics of melon (Cucumis Melo, Cucurbitaceae) biodiversity. Metabolites 10:121

doi: 10.3390/metabo10030121
[9]

Wu Z, Shi Z, Yang X, Xie C, Xu J, et al. 2022. Comparative metabolomics profiling reveals the molecular information of whole and fresh-cut melon fruit (cv. Xizhoumi-17) during storage. Scientia Horticulturae 296:110914

doi: 10.1016/j.scienta.2022.110914
[10]

Xiao J, Sun Y, He Y, Tang X, Yang S, et al. 2023. Comparison of rhizospheric and endophytic bacterial compositions between netted and oriental melons. Microbiology Spectrum 11:e0402722

doi: 10.1128/spectrum.04027-22
[11]

Kaleem MM, Nawaz MA, Ding X, Wen S, Shireen F, et al. 2022. Comparative analysis of pumpkin rootstocks mediated impact on melon sensory fruit quality through integration of non-targeted metabolomics and sensory evaluation. Plant Physiology and Biochemistry 192:320−30

doi: 10.1016/j.plaphy.2022.10.010
[12]

Zhao Y, Duan X, Wang L, Gao G, Xu C, et al. 2022. Transcription factor CmNAC34 regulated CmLCYB-mediated β-carotene accumulation during oriental melon fruit ripening. International Journal of Molecular Sciences 23:9805

doi: 10.3390/ijms23179805
[13]

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890

doi: 10.1093/bioinformatics/bty560
[14]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[15]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[16]

Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

doi: 10.1186/1471-2105-12-323
[17]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[18]

Wang L, Feng Z, Wang X, Wang X, Zhang X. 2010. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136−38

doi: 10.1093/bioinformatics/btp612
[19]

Xie C, Mao X, Huang J, Ding Y, Wu J, et al. 2011. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Research 39:W316−W322

doi: 10.1093/nar/gkr483
[20]

Wang H, Zhang S, Fu Q, Wang Z, Liu X, et al. 2023. Transcriptomic and metabolomic analysis reveals a protein module involved in preharvest apple peel browning. Plant Physiology 192:2102−22

doi: 10.1093/plphys/kiad064
[21]

Giovannoni J. 2018. Tomato multiomics reveals consequences of crop domestication and improvement. Cell 172:6−8

doi: 10.1016/j.cell.2017.12.036
[22]

Gao G, Yang F, Wang C, Duan X, Li M, et al. 2023. The transcription factor CmERFI-2 represses CmMYB44 expression to increase sucrose levels in oriental melon fruit. Plant Physiology 192:1378−95

doi: 10.1093/plphys/kiad155
[23]

Zhang MF, Li ZL. 2005. A comparison of sugar-accumulating patterns and relative compositions in developing fruits of two oriental melon varieties as determined by HPLC. Food chemistry 90(4):785−90

doi: 10.1016/j.foodchem.2004.05.027
[24]

Shao X, He W, Fan Y, Shen Q, Mao J, et al. 2022. Study on the differences in aroma components and formation mechanisms of "Nasmi" melon from different production areas. Food Science & Nutrition 10:3608−20

doi: 10.1002/fsn3.2958
[25]

Wang L, Zhang S, Li J, Zhang Y, Zhou D, et al. 2022. Identification of key genes controlling soluble sugar and glucosinolate biosynthesis in Chinese cabbage by integrating metabolome and genome-wide transcriptome analysis. Frontiers in Plant Science 13:1043489

doi: 10.3389/fpls.2022.1043489
[26]

Wang AH, Ma HY, Zhang BH, Mo CY, Li EH, et al. 2022. Transcriptomic and metabolomic analyses provide insights into the formation of the peach-like aroma of Fragaria nilgerrensis schlecht. fruits. Genes 13:1285

doi: 10.3390/genes13071285
[27]

Dai N, Cohen S, Portnoy V, Tzuri G, Harel-Beja R, et al. 2011. Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology 76:1−18

doi: 10.1007/s11103-011-9757-1
[28]

Lingle SE, Dunlap JR. 1987. Sucrose metabolism in netted muskmelon fruit during development. Plant Physiology 84:386−89

doi: 10.1104/pp.84.2.386
[29]

Kolayli S, Kara M, Tezcan F, Erim FB, Sahin H, et al. 2010. Comparative study of chemical and biochemical properties of different melon cultivars: standard, hybrid, and grafted melons. Journal of Agricultural and Food Chemistry 58:9764−69

doi: 10.1021/jf102408y
[30]

Argyris JM, Díaz A, Ruggieri V, Fernández M, Jahrmann T, et al. 2017. QTL analyses in multiple populations employed for the fine mapping and identification of candidate genes at a locus affecting sugar accumulation in melon (Cucumis melo L.). Frontiers in Plant Science 8:1679

doi: 10.3389/fpls.2017.01679
[31]

Lester GE, Arias LS, Gomez-Lim M. 2001. Muskmelon fruit soluble acid invertase and sucrose phosphate synthaseactivity and polypeptide profiles during growth and maturation. Journal of the American Society for Horticultural Science 126:33−36

doi: 10.21273/JASHS.126.1.33
[32]

Wang C, Jiang H, Gao G, Yang F, Guan J, et al. 2023. CmMYB44 might interact with CmAPS2-2 to regulate starch metabolism in oriental melon fruit. Plant Physiology and Biochemistry 196:361−69

doi: 10.1016/j.plaphy.2023.01.047
[33]

Ren Y, Li M, Guo S, Sun H, Zhao J, et al. 2021. Evolutionary gain of oligosaccharide hydrolysis and sugar transport enhanced carbohydrate partitioning in sweet watermelon fruits. The Plant Cell 33:1554−73

doi: 10.1093/plcell/koab055
[34]

Sigdel S, Singh R, Kim TS, Li J, Kim SY, et al. 2015. Characterization of a mannose-6-phosphate isomerase from Bacillus amyloliquefaciens and its application in fructose-6-phosphate production. PLoS One 10:e0131585

doi: 10.1371/journal.pone.0131585
[35]

Wu Z, Tu M, Yang X, Xu J, Yu ZF. 2020. Effect of cutting and storage temperature on sucrose and organic acids metabolism in postharvest melon fruit. Postharvest Biology and Technology 161:111081

doi: 10.1016/j.postharvbio.2019.111081
[36]

Cheng H, Kong W, Tang T, Ren K, Zhang K, et al. 2022. Identification of key gene networks controlling soluble sugar and organic acid metabolism during oriental melon fruit development by integrated analysis of metabolic and transcriptomic analyses. Frontiers in Plant Science 13:830517

doi: 10.3389/fpls.2022.830517
[37]

Burger Y, Sa'ar U, Distelfeld A, Katzir N, Yeselson Y, et al. 2003. Development of sweet melon (Cucumis melo) genotypes combining high sucrose and organic acid content. Journal of the American Society for Horticultural Science 128:537−40

doi: 10.21273/JASHS.128.4.0537
[38]

Zhang H, Wang H, Yi H, Zhai W, Wang G, et al. 2016. Transcriptome profiling of Cucumis melo fruit development and ripening. Horticulture Research 3:16014

doi: 10.1038/hortres.2016.14
[39]

Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL. 2009. Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329−44

doi: 10.1016/j.phytochem.2009.08.006
[40]

Zhang J, Wang X, Yu O, Tang J, Gu X, et al. 2011. Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany 62:1103−18

doi: 10.1093/jxb/erq343
[41]

Beaulieu JC. 2006. Volatile changes in cantaloupe during growth, maturation, and in stored fresh-cuts prepared from fruit harvested at various maturities. Journal of the American Society for Horticultural Science 131:127−39

doi: 10.21273/JASHS.131.1.127
[42]

Zhang H, Zhu X, Xu R, Yuan Y, Abugu MN, et al. 2023. Postharvest chilling diminishes melon flavor via effects on volatile acetate ester biosynthesis. Frontiers in Plant Science 13:1067680

doi: 10.3389/fpls.2022.1067680
[43]

Tian X, Zhu L, Yang N, Song J, Zhao H, et al. 2021. Proteomics and metabolomics reveal the regulatory pathways of ripening and quality in post-harvest kiwifruits. Journal of Agricultural and Food Chemistry 69:824−35

doi: 10.1021/acs.jafc.0c05492