[1]

FAO. 2024. SDG indicators data portal (Global food loss and waste). www.fao.org/sustainable-development-goals-data-portal/data/indicators/1231-global-food-losses/

[2]

Al-Dairi M, Pathare PB, Al-Yahyai R, Jayasuriya H, Al-Attabi Z. 2023. Postharvest quality, technologies, and strategies to reduce losses along the supply chain of banana: A review. Trends in Food Science & Technology 134:177−91

doi: 10.1016/j.jpgs.2023.03.003
[3]

Mahunu G, Zhang H, Yang Q, Li C, Zheng X. 2016. Biological control of patulin by antagonistic yeast: A case study and possible model. Critical reviews in microbiology 42:643−55

doi: 10.3109/1040841X.2015.1009823
[4]

Sanzani SM, Reverberi M, Geisen R. 2016. Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biology and Technology 122:95−105

doi: 10.1016/j.postharvbio.2016.07.003
[5]

Wang Y, Yang L, Xu J, Xin F, Jiang L. 2023. Applications of synthetic microbial consortia in biological control of mycotoxins and fungi. Current Opinion in Food Science 53:101074

doi: 10.1016/j.cofs.2023.101074
[6]

Zhang Y, Zhao Q, Ngolong Ngea GL, Godana EA, Yang Q, et al. 2024. Biodegradation of patulin in fresh pear juice by an aldo-keto reductase from Meyerozyma guilliermondii. Food Chemistry 436:137696

doi: 10.1016/j.foodchem.2023.137696
[7]

Ezekiel CN, Abia WA, Braun D, Šarkanj B, Ayeni KI, et al. 2022. Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environment International 158:106996

doi: 10.1016/j.envint.2021.106996
[8]

Xu W, Han X, Zhang J, Xu J, Bai L. 2024. Occurrence and co-occurrence of Alternaria toxins in tomato-based products collected in China. Food Control 155:110030

doi: 10.1016/j.foodcont.2023.110030
[9]

Li Y, Shao Y, Zhu Yn, Chen A, Qu J, et al. 2023. Temperature-dependent mycotoxins production investigation in Alternaria infected cherry by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry. International Journal of Food Microbiology 388:110070

doi: 10.1016/j.ijfoodmicro.2022.110070
[10]

Mao X, Chen A, Qu J, Luo P, You Y, et al. 2023. New insights into in mycotoxins production in Alternaria infected apple during postharvest storage. Postharvest Biology and Technology 198:112238

doi: 10.1016/j.postharvbio.2022.112238
[11]

Wang X, Han Y, Niu H, Zhang L, Xiang Q, et al. 2022. Alternaria mycotoxin degradation and quality evaluation of jujube juice by cold plasma treatment. Food Control 137:108926

doi: 10.1016/j.foodcont.2022.108926
[12]

De Berardis S, De Paola EL, Montevecchi G, Garbini D, Masino F, et al. 2018. Determination of four Alternaria alternata mycotoxins by QuEChERS approach coupled with liquid chromatography-tandem mass spectrometry in tomato-based and fruit-based products. Food Research International 106:677−85

doi: 10.1016/j.foodres.2018.01.032
[13]

Nagda A, Meena M. 2024. Alternaria mycotoxins in food and feed: Occurrence, biosynthesis, toxicity, analytical methods, control and detoxification strategies. Food Control 158:110211

doi: 10.1016/j.foodcont.2023.110211
[14]

Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, et al. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters 277:1−10

doi: 10.1111/j.1574-6968.2007.00930.x
[15]

Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118−23

doi: 10.1126/science.1239705
[16]

Brent KJ, Hollomon DW. 2007. Fungicide resistance in crop pathogens: How can it be managed? 2nd, Revised Edition. Belgium: Fungicide Resistance Action Committee. 1−56 pp. www.frac.info/docs/default-source/publications/monographs/monograph-1.pdf

[17]

Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, et al. 2019. Fungicides: An overlooked pesticide class? Environmental Science & Technology 53:3347−65

doi: 10.1021/acs.est.8b04392
[18]

Yuan S, Linquist BA, Wilson LT, Cassman KG, Stuart AM, et al. 2021. Sustainable intensification for a larger global rice bowl. Nature Communications 12:7163

doi: 10.1038/s41467-021-27424-z
[19]

Muñoz-Leoz B, Garbisu C, Charcosset J-Y, Sánchez-Pérez J-M, Antigüedad I, et al. 2013. Non-target effects of three formulated pesticides on microbially-mediated processes in a clay-loam soil. The Science of The Total Environment 449:345−54

doi: 10.1016/j.scitotenv.2013.01.079
[20]

Laborie F, Laborie R, Dedieu E, Vignal N. 1964. Allergy to fungicides of the maneb and zineb type. Prophylaxis. Archives Des Maladies Professionnelles De Medecine Du Travail et De Securite Socialé sociale 25:419−24

[21]

Schüepp H, Schwinn FJ, Hilber U. 1994. Resistance risk evaluation of fludioxonil: a new phenylpyrrole fungicide. In Symposium "Plant Pathology", Reading, United Kingdom, 28−30 March 1994. Farnham: British Crop Protection Council (BCPC). pp. 397.

[22]

Rguez S, Djébali N, Ben Slimene I, Abid G, Hammemi M, et al. 2018. Cupressus sempervirens essential oils and their major compounds successfully control postharvest grey mould disease of tomato. Industrial Crops and Products 123:135−41

doi: 10.1016/j.indcrop.2018.06.060
[23]

Droby S, Wisniewski M, Macarisin D, Wilson C. 2009. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biology and Technology 52:137−45

[24]

Raynaldo FA, Dhanasekaran S, Ngolong Ngea GL, Yang Q, Zhang X, et al. 2021. Investigating the biocontrol potentiality of Wickerhamomyces anomalus against postharvest gray mold decay in cherry tomatoes. Scientia Horticulturae 285:110137

doi: 10.1016/j.scienta.2021.110137
[25]

Raynaldo FA, Ackah M, Ngolong Ngea GL, Yolandani, Rehman SA, et al. 2024. The potentiality of Wickerhamomyces anomalus against postharvest black spot disease in cherry tomatoes and insights into the defense mechanisms involved. Postharvest Biology and Technology 209:112699

doi: 10.1016/j.postharvbio.2023.112699
[26]

Fan L, Lin L, Cheng L, Huang Z, Zhao L, et al. 2023. Yeast suppresses Aspergillus parasiticus growth and aflatoxins synthesis: Finding a new fungal antagonistic strain based on stored marinade. LWT 187:115358

doi: 10.1016/j.lwt.2023.115358
[27]

Zhang X, Li D, Luo Z, Xu Y. 2024. (E)-2-hexenal fumigation control the gray mold on fruits via consuming glutathione of Botrytis cinerea. Food Chemistry 432:137146

doi: 10.1016/j.foodchem.2023.137146
[28]

Zhang H, Godana EA, Sui Y, Yang Q, Zhang X, et al. 2020. Biological control as an alternative to synthetic fungicides for the management of grey and blue mould diseases of table grapes: a review. Critical Reviews in Microbiology 46:450−62

doi: 10.1080/1040841X.2020.1794793
[29]

Leppla NC, LeBeck LM, Johnson MW. 2024. Status and trends of biological control research, extension, and education in the United States. Annals of the Entomological Society of America 117:130−38

doi: 10.1093/aesa/saae005
[30]

Woudenberg JHC, Groenewald JZ, Binder M, Crous PW. 2013. Alternaria redefined. Studies in Mycology 75:171−12

doi: 10.3114/sim0015
[31]

Patriarca A. 2016. Alternaria in food products. Current Opinion in Food Science 11:1−9

doi: 10.1016/j.cofs.2016.08.007
[32]

Tralamazza SM, Piacentini KC, Iwase CHT, Rocha LdO. 2018. Toxigenic Alternaria species: impact in cereals worldwide. Current Opinion in Food Science 23:57−63

doi: 10.1016/j.cofs.2018.05.002
[33]

Fagodiya RK, Trivedi A, Fagodia BL. 2022. Impact of weather parameters on Alternaria leaf spot of soybean incited by Alternaria alternata. Scientific Reports 12:6131

doi: 10.1038/s41598-022-10108-z
[34]

Molnár A, Knapp DG, Lovas M, Tóth G, Boldizsár I, et al. 2023. Untargeted metabolomic analyses support the main phylogenetic groups of the common plant-associated Alternaria fungi isolated from grapevine (Vitis vinifera). Scientific Reports 13:19298

doi: 10.1038/s41598-023-46020-3
[35]

Gabriel MF, Uriel N, Teifoori F, Postigo I, Suñén E, et al. 2017. The major Alternaria alternata allergen, Alt a 1: A reliable and specific marker of fungal contamination in citrus fruits. International Journal of Food Microbiology 257:26−30

doi: 10.1016/j.ijfoodmicro.2017.06.006
[36]

Zahoor S, Naz R, Keyani R, Roberts TH, Hassan MN, et al. 2022. Rhizosphere bacteria associated with Chenopodium quinoa promote resistance to Alternaria alternata in tomato. Scientific Reports 12:19027

doi: 10.1038/s41598-022-21857-2
[37]

Jiang M, You S, Sha H, Bai B, Zhang L, et al. 2023. Detection of Alternaria alternata infection in winter jujubes based on optical properties and their correlation with internal quality parameters during storage. Food Chemistry 409:135298

doi: 10.1016/j.foodchem.2022.135298
[38]

Raffaele S, Kamoun S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nature Reviews Microbiology 10:417−30

doi: 10.1038/nrmicro2790
[39]

Lincoln JE, Richael C, Overduin B, Smith K, Bostock R, et al. 2002. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proceedings of the National Academy of Sciences of the United States of America 99:15217−21

doi: 10.1073/pnas.232579799
[40]

Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, et al. 2000. A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proceedings of the National Academy of Sciences of the United States of America 97:4961−66

doi: 10.1073/pnas.97.9.4961
[41]

Ostry V. 2008. Alternaria mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. World Mycotoxin Journal 1:175−88

doi: 10.3920/WMJ2008.x013
[42]

Escrivá L, Oueslati S, Font G, Manyes L. 2017. Alternaria mycotoxins in food and feed: An overview. Journal of Food Quality 2017:1569748

doi: 10.1155/2017/1569748
[43]

Meena M, Samal S. 2019. Alternaria host-specific (HSTs) toxins: An overview of chemical characterization, target sites, regulation and their toxic effects. Toxicology Reports 6:745−58

doi: 10.1016/j.toxrep.2019.06.021
[44]

Bi K, Liang Y, Mengiste T, Sharon A. 2023. Killing softly: a roadmap of Botrytis cinerea pathogenicity. Trends in Plant Science 28:211−22

doi: 10.1016/j.tplants.2022.08.024
[45]

Bi K, Scalschi L, Jaiswal N, Mengiste T, Fried R, et al. 2021. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nature Communications 12:2166

doi: 10.1038/s41467-021-22436-1
[46]

Staats M, van Baarlen P, van Kan JAL. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Molecular Biology and Evolution 22:333−46

doi: 10.1093/molbev/msi020
[47]

Govrin EM, Levine A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Current Biology 10:751−57

doi: 10.1016/S0960-9822(00)00560-1
[48]

Guo J, Xu Y, Liang S, Zhou Z, Zhang C, et al. 2023. Antifungal activity of volatile compounds from Bacillus tequilensis XK29 against Botrytis cinerea causing gray mold on cherry tomatoes. Postharvest Biology and Technology 198:112239

doi: 10.1016/j.postharvbio.2022.112239
[49]

Sanzani SM, Schena L, De Cicco V, Ippolito A. 2012. Early detection of Botrytis cinerea latent infections as a tool to improve postharvest quality of table grapes. Postharvest Biology and Technology 68:64−71

doi: 10.1016/j.postharvbio.2012.02.003
[50]

Hu Z, Chang X, Dai T, Li L, Liu P, et al. 2019. Metabolic profiling to identify the latent infection of strawberry by Botrytis cinerea. Evolutionary Bioinformatics 15:1−7

doi: 10.1177/1176934319838518
[51]

Romanazzi G, Smilanick JL, Feliziani E, Droby S. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology 113:69−76

doi: 10.1016/j.postharvbio.2015.11.003
[52]

Ge M, Zhang L, Ai J, Ji R, He L, et al. 2020. Effect of heat shock and potassium sorbate treatments on gray mold and postharvest quality of ‘XuXiang’ kiwifruit. Food Chemistry 324:126891

doi: 10.1016/j.foodchem.2020.126891
[53]

Usall J, Torres R, Teixidó N. 2016. Biological control of postharvest diseases on fruit: a suitable alternative? Current Opinion in Food Science 11:51−55

doi: 10.1016/j.cofs.2016.09.002
[54]

Tomasetto F, Tylianakis JM, Reale M, Wratten S, Goldson SL. 2017. Intensified agriculture favors evolved resistance to biological control. Proceedings of the National Academy of Sciences of the United States of America 114:3885−90

doi: 10.1073/pnas.1618416114
[55]

Saravanakumar D, Ciavorella A, Spadaro D, Garibaldi A, Gullino ML. 2008. Metschnikowia pulcherrima strain MACH1 outcompetes Botrytis cinerea, Alternaria alternata and Penicillium expansum in apples through iron depletion. Postharvest Biology and Technology 49:121−28

doi: 10.1016/j.postharvbio.2007.11.006
[56]

Zhang X, Zhou Y, Li J, Gu X, Zhao L, et al. 2022. Pichia caribbica improves disease resistance of cherry tomatoes by regulating ROS metabolism. Biological Control 169:104870

doi: 10.1016/j.biocontrol.2022.104870
[57]

Zhao Q, Shi Y, Xu C, Jiang Z, Liu J, et al. 2023. Control of postharvest blue and gray mold in kiwifruit by Wickerhamomyces anomalus and its mechanism of antifungal activity. Postharvest Biology and Technology 201:112345

doi: 10.1016/j.postharvbio.2023.112345
[58]

Zhao Q, Shi Y, Legrand Ngolong Ngea G, Zhang X, Yang Q, et al. 2023. Changes of the microbial community in kiwifruit during storage after postharvest application of Wickerhamomyces anomalus. Food Chemistry 404:134593

doi: 10.1016/j.foodchem.2022.134593
[59]

Sun C, Fu D, Jin L, Chen M, Zheng X, et al. 2018. Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydrate Polymers 199:341−52

doi: 10.1016/j.carbpol.2018.07.045
[60]

Zhang H, Mahunu GK, Castoria R, Yang Q, Apaliya MT. 2018. Recent developments in the enhancement of some postharvest biocontrol agents with unconventional chemicals compounds. Trends in Food Science & Technology 78:180−87

doi: 10.1016/j.jpgs.2018.06.002
[61]

Wisniewski M, Droby S, Norelli J, Liu J, Schena L. 2016. Alternative management technologies for postharvest disease control: The journey from simplicity to complexity. Postharvest Biology and Technology 122:3−10

doi: 10.1016/j.postharvbio.2016.05.012
[62]

Yan F, Xu S, Chen Y, Zheng X. 2014. Effect of rhamnolipids on Rhodotorula glutinis biocontrol of Alternaria alternata infection in cherry tomato fruit. Postharvest Biology and Technology 97:32−35

doi: 10.1016/j.postharvbio.2014.05.017
[63]

Yu T, Yu C, Lu H, Zunun M, Chen F, et al. 2012. Effect of Cryptococcus laurentii and calcium chloride on control of Penicillium expansum and Botrytis cinerea infections in pear fruit. Biological Control 61:169−75

doi: 10.1016/j.biocontrol.2012.01.012
[64]

Li C, Zhang H, Yang Q, Komla MG, Zhang X, et al. 2014. Ascorbic acid enhances oxidative stress tolerance and biological control efficacy of Pichia caribbica against postharvest blue mold decay of apples. Journal of Agricultural and Food Chemistry 62:7612−21

doi: 10.1021/jf501984n
[65]

Godana EA, Yang Q, Wang K, Zhang H, Zhang X, et al. 2020. Bio-control activity of Pichia anomala supplemented with chitosan against Penicillium expansum in postharvest grapes and its possible inhibition mechanism. LWT 124:109188

doi: 10.1016/j.lwt.2020.109188
[66]

He F, Zhao L, Zheng X, Abdelhai MH, Boateng NS, et al. 2020. Investigating the effect of methyl jasmonate on the biocontrol activity of Meyerozyma guilliermondii against blue mold decay of apples and the possible mechanisms involved. Physiological and Molecular Plant Pathology 109:101454

doi: 10.1016/j.pmpp.2019.101454
[67]

Zhang H, Yang Q, Lin H, Ren X, Zhao L, et al. 2013. Phytic acid enhances biocontrol efficacy of Rhodotorula mucilaginosa against postharvest gray mold spoilage and natural spoilage of strawberries. LWT - Food Science and Technology 52:110−15

doi: 10.1016/j.lwt.2012.01.027
[68]

Karabulut OA, Arslan U, Ilhan K, Kuruoglu G. 2005. Integrated control of postharvest diseases of sweet cherry with yeast antagonists and sodium bicarbonate applications within a hydrocooler. Postharvest Biology and Technology 37:135−41

doi: 10.1016/j.postharvbio.2005.03.003
[69]

Wang Y, Tang F, Xia J, Yu T, Wang J, et al. 2011. A combination of marine yeast and food additive enhances preventive effects on postharvest decay of jujubes (Zizyphus jujuba). Food Chemistry 125:835−40

doi: 10.1016/j.foodchem.2010.09.032
[70]

Spadaro D, Droby S. 2016. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology 47:39−49

doi: 10.1016/j.jpgs.2015.11.003
[71]

El Ghaouth A, Wilson C, Wisniewski M. 2004. Biologically-based alternatives to synthetic fungicides for the control of postharvest diseases of fruit and vegetables. In Diseases of Fruits and Vegetables, eds. Naqvi SAMH. : Volume 2. Dordrecht: Springer. pp. 511−35. https://doi.org/10.1007/1-4020-2607-2_14

[72]

Kim BS, Lee JY, Hwang BK. 2000. In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Management Science 56:1029−35

doi: 10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q
[73]

Wisniewski ME, Wilson CL. 1992. Biological control of postharvest diseases of fruits and vegetables: recent advances. Hortscience 27:94−98

doi: 10.21273/HORTSCI.27.2.94
[74]

Zhang R, Yu J, Yin X, Ren X, Kong Q. 2018. Biocontrol of postharvest decay on cherry tomatoes by recombinant strain GS115/CEC and its possible mechanism. Food Biotechnology 32:163−77

doi: 10.1080/08905436.2018.1443823
[75]

Wisniewski M, Biles C, Droby S, McLaughlin R, Wilson C, et al. 1991. Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii I. characterization of attachment to Botrytis cinerea. Physiological and Molecular Plant Pathology 39:245−58

doi: 10.1016/0885-5765(91)90033-e
[76]

El-Ghaouth A, Wilson CL, Wisniewski M. 1998. Ultrastructural and cytochemical aspects of the biological control of Botrytis cinerea by Candida saitoana in apple fruit. Phytopathology 88(4):282−91

doi: 10.1094/PHYTO.1998.88.4.282
[77]

Ippolito A, El Ghaouth A, Wilson CL, Wisniewski M. 2000. Control of postharvest decay of apple fruit by Aureobasidium pullulans and induction of defense responses. Postharvest Biology and Technology 19:265−72

doi: 10.1016/S0925-5214(00)00104-6
[78]

Palou L, Ali A, Fallik E, Romanazzi G. 2016. GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of postharvest diseases of fresh horticultural produce. Postharvest Biology and Technology 122:41−52

doi: 10.1016/j.postharvbio.2016.04.017
[79]

Rao J, Chen B, Mcclements DJ. 2019. Improving the efficacy of essential oils as antimicrobials in foods: Mechanisms of action. Annual Review of Food Science and Technology 10:365−87

doi: 10.1146/annurev-food-032818-121727
[80]

Fielding BC, Knowles CL, Vries FA, Klaasen JA. 2015. Testing of eight medicinal plant extracts in combination with kresoxim-methyl for integrated control of Botrytis cinerea in apples. Agriculture 5:400−11

doi: 10.3390/agriculture5030400
[81]

El Khetabi A, Lahlali R, Ezrari S, Radouane N, Lyousfi N, et al. 2022. Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends in Food Science & Technology 120:402−17

doi: 10.1016/j.jpgs.2022.01.009
[82]

Hendges C, Stangarlin JR, Zamban VC, de Holanda Nozaki Mascaro M, Carmelo DB. 2021. Antifungal activity and control of the early blight in tomato through tea tree essential oil. Crop Protection 148:105728

doi: 10.1016/j.cropro.2021.105728
[83]

Zhao Y, Yang YH, Ye M, Wang KB, Fan LM, et al. 2021. Chemical composition and antifungal activity of essential oil from Origanum vulgare against Botrytis cinerea. Food Chemistry 365:130506

doi: 10.1016/j.foodchem.2021.130506
[84]

Rashvand M, Matera A, Altieri G, Genovese F, Fadiji T, et al. 2023. Recent advances in the potential of modeling and simulation to assess the performance of modified atmosphere packaging (MAP) systems for the fresh agricultural product: Challenges and development. Trends in Food Science & Technology 136:48−63

doi: 10.1016/j.jpgs.2023.04.012
[85]

Jia CG, Xu CJ, Wei J, Yuan J, Yuan GF, et al. 2009. Effect of modified atmosphere packaging on visual quality and glucosinolates of broccoli florets. Food Chemistry 114:28−37

doi: 10.1016/j.foodchem.2008.09.009
[86]

D'Aquino S, Mistriotis A, Briassoulis D, Di Lorenzo ML, Malinconico M, et al. 2016. Influence of modified atmosphere packaging on postharvest quality of cherry tomatoes held at 20 °C. Postharvest Biology and Technology 115:103−12

doi: 10.1016/j.postharvbio.2015.12.014
[87]

Ju J, Xie Y, Guo Y, Cheng Y, Qian H, et al. 2019. Application of edible coating with essential oil in food preservation. Critical Reviews in Food Science and Nutrition 59:2467−80

doi: 10.1080/10408398.2018.1456402
[88]

Moreno MA, Vallejo AM, Ballester AR, Zampini C, Isla MI, et al. 2020. Antifungal edible coatings containing Argentinian propolis extract and their application in raspberries. Food Hydrocolloids 107:105973

doi: 10.1016/j.foodhyd.2020.105973
[89]

Sun C, Cao J, Wang Y, Huang L, Chen J, et al. 2022. Preparation and characterization of pectin-based edible coating agent encapsulating carvacrol/HPβCD inclusion complex for inhibiting fungi. Food Hydrocolloids 125:107374

doi: 10.1016/j.foodhyd.2021.107374
[90]

Mittler R, Finka A, Goloubinoff P. 2012. How do plants feel the heat? Trends in Biochemical Sciences 37:118−25

doi: 10.1016/j.tibs.2011.11.007
[91]

McClung CR, Davis SJ. 2010. Ambient thermometers in plants: From physiological outputs towards mechanisms of thermal sensing. Current Biology 20:R1086−R1092

doi: 10.1016/j.cub.2010.10.035
[92]

Usall J, Ippolito A, Sisquella M, Neri F. 2016. Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology 122:30−40

doi: 10.1016/j.postharvbio.2016.05.002
[93]

Sui Y, Wisniewski M, Droby S, Norelli J, Liu J. 2016. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat? Trends in Food Science & Technology 51:34−40

doi: 10.1016/j.jpgs.2016.03.004
[94]

Nimitkeatkai H, Techavuthiporn C, Boonyaritthongchai P, Supapvanich S. 2022. Commercial active packaging maintaining physicochemical qualities of carambola fruit during cold storage. Food Packaging and Shelf Life 32:100834

doi: 10.1016/j.fpsl.2022.100834
[95]

Minas IS, Karaoglanidis GS, Manganaris GA, Vasilakakis M. 2010. Effect of ozone application during cold storage of kiwifruit on the development of stem-end rot caused by Botrytis cinerea. Postharvest Biology and Technology 58:203−10

doi: 10.1016/j.postharvbio.2010.07.002
[96]

Soro AB, Shokri S, Nicolau-Lapeña I, Ekhlas D, Burgess CM, et al. 2023. Current challenges in the application of the UV-LED technology for food decontamination. Trends in Food Science & Technology 131:264−76

doi: 10.1016/j.jpgs.2022.12.003
[97]

Sripong K, Jitareerat P, Uthairatanakij A. 2019. UV irradiation induces resistance against fruit rot disease and improves the quality of harvested mangosteen. Postharvest Biology and Technology 149:187−94

doi: 10.1016/j.postharvbio.2018.12.001
[98]

Darras AI, Joyce DC, Terry LA. 2010. Postharvest UV-C irradiation on cut Freesia hybrida L. inflorescences suppresses petal specking caused by Botrytis cinerea. Postharvest Biology and Technology 55:186−88

doi: 10.1016/j.postharvbio.2009.09.005
[99]

Segoli M, Abram PK, Ellers J, Greenbaum G, Hardy ICW, et al. 2023. Trait-based approaches to predicting biological control success: challenges and prospects. Trends in Ecology & Evolution 38:802−11

doi: 10.1016/j.tree.2023.04.008
[100]

Regnault-Roger C, Vincent C, Arnason JT. 2012. Essential oils in insect control: Low-risk products in a high-stakes world. Annual Review of Entomology 57:405−24

doi: 10.1146/annurev-ento-120710-100554