[1] |
Nyamadzawo G, Wuta M, Nyamangara J, Gumbo D. 2013. Opportunities for optimization of in-field water harvesting to cope with changing climate in semi-arid smallholder farming areas of Zimbabwe. Springer Plus 2:100 doi: 10.1186/2193-1801-2-100 |
[2] |
Kubiku FNM, Nyamadzawo G, Nyamangara J, Mandumbu R. 2022. Effect of contour rainwater-harvesting and integrated nutrient management on sorghum grain yield in semi-arid farming environments of Zimbabwe. Acta Agriculturae Scandinavica Section B - Soil & Plant Science 72:364−74 doi: 10.1080/09064710.2021.2005130 |
[3] |
Kugedera AT, Mango L, Kokerai LK. 2020. Effects of integrated nutrient management and tied ridges on maize productivity in dry regions of Zimbabwe. Octa Journal of Biosciences 8(1):7−13 |
[4] |
Zhang XF, Luo CL, Ren HX, Mburu D, Wang BZ, et al. 2021. Water productivity and its allometric mechanism in mulching cultivated maize (Zea mays L. ) in semiarid Kenya. Agricultural Water Management 246:106647 doi: 10.1016/j.agwat.2020.106647 |
[5] |
Mudatenguha F, Anena J, Kiptum CK, Mashingaidze AB. 2014. In situ rain water harvesting techniques increases maize growth and grain yield in a semi-arid agro-ecology of Nyagatare, Rwanda. International Journal of Agriculture and Biology 16:996−1000 |
[6] |
Nyagumbo I, Nyamadzawo G, Madembo C. 2019. Effects of three in-field water harvesting technologies on soil water content and maize yields in a semi-arid region of Zimbabwe. Agricultural Water Management 216:206−13 doi: 10.1016/j.agwat.2019.02.023 |
[7] |
Mucheru-Muna M, Mugendi D, Kung'u J, Mugwe J, Bationo A. 2007. Effects of organic and mineral fertilizer inputs on maize yield and soil chemical properties in a maize cropping system in Meru South District, Kenya. Agroforestry Systems 69:189−97 doi: 10.1007/s10457-006-9027-4 |
[8] |
Munyasya AN, Koskei K, Zhou R, Liu ST, Indoshi SN, et al. 2022. Integrated on site & off-site rainwater-harvesting system boosts rainfed maize production for better adaptation to climate change. Agricultural Water Management 269:107672 doi: 10.1016/j.agwat.2022.107672 |
[9] |
Mupangwa W, Twomlow S, Walker S. 2012. Dead level contours and infiltration pits for risk mitigation in smallholder cropping systems of southern Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C 47–48:166−72 doi: 10.1016/j.pce.2011.06.011 |
[10] |
Eleduma AF, Aderibigbe ATB, Obabire SO. 2020. Effect of cattle manure on the performances of maize (Zea mays L.) grown in forest-savannah transition zone Southwest Nigeria. International Journal of Agricultural Science and Food Technology 6(2):110−14 doi: 10.17352/2455-815X.000063 |
[11] |
Chilagane EA, Saidia PS, Kahimba FC, Asch F, Germer J, et al. 2020. Effects of Fertilizer Micro-dose and In Situ Rain Water Harvesting Technologies on Growth and Yield of Pearl Millet in a Semi-arid Environment. Agricultural Research 9:609−21 doi: 10.1007/s40003-020-00454-7 |
[12] |
Parwada C, Van Tol J. 2019. Effects of litter quality on macroaggregates reformation and soil stability in different soil horizons. Environment, Development and Sustainability 21:1321−39 doi: 10.1007/s10668-018-0089-z |
[13] |
Mugwe J, Ngetich F, Otieno EO. 2019. Integrated soil fertility management in sub-Saharan Africa: evolving paradigms toward integration. InZero Hunger. Encyclopedia of the UN Sustainable Development Goals, eds. Leal Filho W, Azul A, Brandli L, Özuyar P, Wall T. Cham: Springer. https://doi.org/10.1007/978-3-319-69626-3_71-1 |
[14] |
Kimaru-Muchai SW, Ngetich FK, Mucheru-Muna MW, Baaru M. 2021. Zai pits for heightened sorghum production in drier parts of Upper Eastern Kenya. Heliyon 7:e08005 doi: 10.1016/j.heliyon.2021.e08005 |
[15] |
Coulibaly B. 2017. Impact of water harvesting techniques and nutrient management options on the yield of pearl millet in the Sahelian Zone of Mali. Thesis. Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. pp 193. |
[16] |
Traore K, Sidibe DK, Coulibaly H, Bayala J. 2017. Optimizing yield of improved varieties of millet and sorghum under highly variable rainfall conditions using contour ridges in Cinzana, Mali. Agriculture & Food Securityrity 6:11 doi: 10.1186/s40066-016-0086-0 |
[17] |
Wuta M, Nyamadzawo G, Nyamasoka B, Nyawasha R, Matayaya G, et al. 2018. Rainwater harvesting options to support off-season small-scale irrigation in arid and semi-arid areas of Zimbabwe. In Rainwater-Smart Agriculture in arid and semi-arid areas, eds. Leal Filho W, de Trincheria Gomez J. Cham: Springer. pp. 175–97. http://doi.org/10.1007/978-3-319-66239-8_10 |
[18] |
Kimaru-Muchai S, Ngetich F, Baaru M, Mucheru-Muna PMW. 2020. Adoption and utilisation of Zai pits for improved farm productivity in drier upper Eastern Kenya. Journal of Agriculture and Rural Development in the Tropics and Subtropics 121(1):13−22 doi: 10.17170/kobra-202002281030 |
[19] |
Kugedera AT, Mango L, Kokeraİ L. 2020. Evaluating the effects of integrated nutrient management and insitu rainwater harvesting on maize production in dry regions of Zimbabwe. International Journal of Agriculture Environment and Food Sciences 4(3):303−10 doi: 10.31015/jaefs.2020.3.9 |
[20] |
Vanlauwe B, Descheemaeker K, Giller KE, Huising J, Merckx R, et al. 2015. Integrated soil fertility management in sub-Saharan Africa: unravelling local adaptation. Soil 1:491−508 doi: 10.5194/soil-1-491-2015 |
[21] |
Motsi KE, Chuma E, Mukamuri BB. 2004. Rainwater harvesting for sustainable agriculture in communal lands of Zimbabwe. Physics And Chemistry Earth, Parts A/B/C 29:1069−73. doi: 10.1016/j.pce.2004.08.008 |
[22] |
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome. www.fao.org/3/i3794en/I3794en.pdf |
[23] |
Parwada C, Chigiya V, Ngezimana W, Chipomho J. 2020. Growth and performance of Baby Spinach (Spinacia oleracea L.) grown under different organic fertilizers. International Journal of Agronomy 2020:8843906 doi: 10.1155/2020/8843906 |
[24] |
Okalebo JB, Gathua KW, Woomer PL. 2000. Laboratory Methods of Soil and Plant Analysis: A Working Manual. Nairobi, Kenya: TSBF-KARI-UNESCO. |
[25] |
Rowland AP, Grimshaw HM. 1985. A wet oxidation procedure suitable for total nitrogen and phosphorus in soil. Communications in Soil Science and Plant Analysis 16:551−60 doi: 10.1080/00103628509367628 |
[26] |
Masaka J, Dera J, Muringaniza K. 2020. Dryland grain Sorghum (Sorghum bicolor) yield and yield component responses to tillage and mulch practices under subtropical African Conditions. Agricultural Research 9:349−57 doi: 10.1007/s40003-019-00427-5 |
[27] |
Shumba A, Dunjana N, Nyamasoka B, Nyamugafata P, Madyiwa S, et al. 2020. Maize (Zea mays) yield and its relationship to soil properties under integrated fertility, mulch and tillage management in urban agriculture. South African Journal of Plant and Soil 37:120−22 doi: 10.1080/02571862.2019.1678686 |