[1] |
Ray DK, Ramankutty N, Mueller ND, West PC, Foley JA. 2012. Recent patterns of crop yield growth and stagnation. Nature Communications 3:1293 doi: 10.1038/ncomms2296 |
[2] |
Ray DK, Mueller ND, West PC, Foley JA. 2013. Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428 doi: 10.1371/journal.pone.0066428 |
[3] |
Zhu XG, Long SP, Ort DR. 2010. Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology 61:235−61 doi: 10.1146/annurev-arplant-042809-112206 |
[4] |
Hatfield JL. 2014. Radiation use efficiency: evaluation of cropping and management systems. Agronomy Journal 106:1820−27 doi: 10.2134/agronj2013.0310 |
[5] |
Reynolds M, Foulkes MJ, Slafer GA, Berry P, Parry MAJ, et al. 2009. Raising yield potential in wheat. Journal of Experimental Botany 60:1899−918 doi: 10.1093/jxb/erp016 |
[6] |
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI. 2019. Genetic strategies for improving crop yields. Nature 575:109−18 doi: 10.1038/s41586-019-1679-0 |
[7] |
Calvin M, Benson AA. 1948. The path of carbon in photosynthesis. Science 107:476−80 doi: 10.1126/science.107.2784.476 |
[8] |
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, et al. 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research 152:23−42 doi: 10.1007/s11120-021-00892-6 |
[9] |
Tanaka R, Tanaka A. 2011. Chlorophyll cycle regulates the construction and destruction of the light-harvesting complexes. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1807:968−76 doi: 10.1016/j.bbabio.2011.01.002 |
[10] |
Wietrzynski W, Engel BD. 2021. Chlorophyll biogenesis sees the light. Nature Plants 7:380−81 doi: 10.1038/s41477-021-00900-6 |
[11] |
Stenbaek A, Jensen PE. 2010. Redox regulation of chlorophyll biosynthesis. Phytochemistry 71:853−59 doi: 10.1016/j.phytochem.2010.03.022 |
[12] |
Aarti PD, Tanaka R, Tanaka A. 2006. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiologia Plantarum 128:186−97 doi: 10.1111/j.1399-3054.2006.00720.x |
[13] |
Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K. 1995. Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proceedings of the National Academy of Sciences of the United States of America 92:3254−8 doi: 10.1073/pnas.92.8.3254 |
[14] |
Selstam E, Sandelius AS. 1984. A Comparison between Prolamellar Bodies and Prothylakoid Membranes of Etioplasts of Dark-Grown Wheat Concerning Lipid and Polypeptide Composition. Plant Physiology 76:1036−40 doi: 10.1104/pp.76.4.1036 |
[15] |
Solymosi K, Schoefs B. 2010. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. Photosynthesis Research 105:143−66 doi: 10.1007/s11120-010-9568-2 |
[16] |
Fujita Y. 1996. Protochlorophyllide reduction: a key step in the greening of plants. Plant and Cell Physiology 37:411−21 doi: 10.1093/oxfordjournals.pcp.a028962 |
[17] |
Heyes DJ, Zhang S, Taylor A, Johannissen LO, Hardman SJO, et al. 2021. Photocatalysis as the 'master switch' of photomorphogenesis in early plant development. Nature Plants 7:268−76 doi: 10.1038/s41477-021-00866-5 |
[18] |
Yamazaki S, Nomata J, Fujita Y. 2006. Differential operation of dual protochlorophyllide reductases for chlorophyll biosynthesis in response to environmental oxygen levels in the cyanobacterium Leptolyngbya boryana. Plant Physiology 142:911−22 doi: 10.1104/pp.106.086090 |
[19] |
Vedalankar P, Tripathy BC. 2019. Evolution of light-independent protochlorophyllide oxidoreductase. Protoplasma 256:293−312 doi: 10.1007/s00709-018-1317-y |
[20] |
Chernomor O, Peters L, Schneidewind J, Loeschcke A, Knieps-Grünhagen E, et al. 2021. Complex Evolution of Light-Dependent protochlorophyllide Oxidoreductases in Aerobic Anoxygenic Phototrophs: origin, Phylogeny, and Function. Molecular Biology and Evolution 38:819−37 doi: 10.1093/molbev/msaa234 |
[21] |
Kaschner M, Loeschcke A, Krause J, Minh BQ, Heck A, et al. 2014. Discovery of the first light-dependent protochlorophyllide oxidoreductase in anoxygenic phototrophic bacteria. Molecular Microbiology 93:1066−78 doi: 10.1111/mmi.12719 |
[22] |
Stolárik T, Nožková V, Nosek L, Pavlovič A. 2018. Dark chlorophyll synthesis may provide a potential for shade tolerance as shown by a comparative study with seedlings of European larch (Larix decidua) and Norway spruce (Picea abies). Trees 32:951−65 doi: 10.1007/s00468-018-1688-x |
[23] |
Gabruk M, Mysliwa-Kurdziel B. 2020. The origin, evolution and diversification of multiple isoforms of light-dependent protochlorophyllide oxidoreductase (LPOR): focus on angiosperms. Biochemical Journal 477:2221−36 doi: 10.1042/BCJ20200323 |
[24] |
Yang J, Cheng Q. 2004. Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes. Plant Biology 6:537−44 doi: 10.1055/s-2004-821270 |
[25] |
Paddock T, Lima D, Mason ME, Apel K, Armstrong GA. 2012. Arabidopsis light-dependent protochlorophyllide oxidoreductase A (PORA) is essential for normal plant growth and development. Plant Molecular Biology 78:447−60 doi: 10.1007/s11103-012-9873-6 |
[26] |
Erdei AL, Kósa A, Kovács-Smirová L, Böddi B. 2016. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.). Photosynthesis Research 128:73−83 doi: 10.1007/s11120-015-0200-3 |
[27] |
Kwon CT, Kim SH, Song G, Kim D, Paek NC. 2017. Two NADPH: Protochlorophyllide Oxidoreductase (POR) isoforms play distinct roles in environmental adaptation in rice. Rice 10:1 doi: 10.1186/s12284-016-0141-2 |
[28] |
Buhr F, Lahroussi A, Springer A, Rustgi S, von Wettstein D, et al. 2017. NADPH: protochlorophyllide oxidoreductase B (PORB) action in Arabidopsis thaliana revisited through transgenic expression of engineered barley PORB mutant proteins. Plant Molecular Biology 94:45−59 doi: 10.1007/s11103-017-0592-x |
[29] |
Millerd A, McWilliam JR. 1968. Studies on a maize mutant sensitive to low temperature I. Influence of temperature and light on the production of chloroplast pigments. Plant Physiology 43:1967−72 doi: 10.1104/pp.43.12.1967 |
[30] |
Talaat NB. 2013. RNAi based simultaneous silencing of all forms of light-dependent NADPH: protochlorophyllide oxidoreductase genes result in the accumulation of protochlorophyllide in tobacco (Nicotiana tabacum). Plant Physiology and Biochemistry 71:31−36 doi: 10.1016/j.plaphy.2013.06.025 |
[31] |
Fusada N, Masuda T, Kuroda H, Shiraishi T, Shimada H, et al. 2000. NADPH-protochlorophyllide oxidoreductase in cucumber is encoded by a single gene and its expression is transcriptionally enhanced by illumination. Photosynthesis Research 64:147−54 doi: 10.1023/A:1006418608647 |
[32] |
Erdei N, Barta C, Hideg E, Böddi B. 2005. Light-induced wilting and its molecular mechanism in epicotyls of dark-germinated pea (Pisum sativum L.) seedlings. Plant and Cell Physiology 46:185−91 doi: 10.1093/pcp/pci012 |
[33] |
Huq E, Al-Sady B, Hudson M, Kim C, Apel K, et al. 2004. PHYTOCHROME-INTERACTING FACTOR 1 is a critical bHLH regulator of chlorophyll biosynthesis. Science 305:1937−41 doi: 10.1126/science.1099728 |
[34] |
Kojima K, Oshita M, Nanjo Y, Kasai K, Tozawa Y, et al. 2007. Oxidation of elongation factor G inhibits the synthesis of the D1 protein of photosystem II. Molecular Microbiology 65:936−47 doi: 10.1111/j.1365-2958.2007.05836.x |
[35] |
Oosawa N, Masuda T, Awai K, Fusada N, Shimada H, et al. 2000. Identification and light-induced expression of a novel gene of NADPH-protochlorophyllide oxidoreductase isoform in Arabidopsis thaliana. FEBS Letters 474:133−36 doi: 10.1016/S0014-5793(00)01568-4 |
[36] |
Armstrong GA, Runge S, Frick G, Sperling U, Apel K. 1995. Identification of NADPH: protochlorophyllide oxidoreductases A and B: a branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiology 108:1505−17 doi: 10.1104/pp.108.4.1505 |
[37] |
Su Q, Frick G, Armstrong G, Apel K. 2001. POR C of Arabidopsis thaliana: a third light- and NADPH-dependent protochlorophyllide oxidoreductase that is differentially regulated by light. Plant Molecular Biology 47:805−13 doi: 10.1023/A:1013699721301 |
[38] |
Matsumoto F, Obayashi T, Sasaki-Sekimoto Y, Ohta H, Takamiya K, et al. 2004. Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system. Plant Physiology 135:2379−91 doi: 10.1104/pp.104.042408 |
[39] |
Paddock TN, Mason ME, Lima DF, Armstrong GA. 2010. Arabidopsis protochlorophyllide oxidoreductase A (PORA) restores bulk chlorophyll synthesis and normal development to a porB porC double mutant. Plant Molecular Biology 72:445−57 doi: 10.1007/s11103-009-9582-y |
[40] |
Ji S, Grimm B, Wang P. 2023. Chloroplast SRP43 and SRP54 independently promote thermostability and membrane binding of light-dependent protochlorophyllide oxidoreductases. The Plant Journal 115:1583−98 doi: 10.1111/tpj.16339 |
[41] |
Zhao Y, Han Q, Ding C, Huang Y, Liao J, et al. 2020. Effect of low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. International Journal of Molecular Sciences 21:1390 doi: 10.3390/ijms21041390 |
[42] |
Reinbothe S, Reinbothe C, Holtorf H, Apel K. 1995. Two NADPH: protochlorophyllide oxidoreductases in barley: evidence for the selective disappearance of PORA during the light-induced greening of etiolated seedlings. The Plant Cell 7:1933−40 doi: 10.2307/3870200 |
[43] |
Reinbothe C, Pollmann S, Desvignes C, Weigele M, Beck E, et al. 2004. LHPP, the light-harvesting NADPH: protochlorophyllide (Pchlide) oxidoreductase: Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Science 167:1027−41 doi: 10.1016/j.plantsci.2004.05.044 |
[44] |
Reinbothe C, Buhr F, Bartsch S, Desvignes C, Quigley F, et al. 2006. In vitro-mutagenesis of NADPH: protochlorophyllide oxidoreductase B: two distinctive protochlorophyllide binding sites participate in enzyme catalysis and assembly. Molecular Genetics and Genomics 275:540−52 doi: 10.1007/s00438-006-0109-9 |
[45] |
Menon BRK, Hardman SJO, Scrutton NS, Heyes DJ. 2016. Multiple active site residues are important for photochemical efficiency in the light-activated enzyme protochlorophyllide oxidoreductase (POR). Journal of Photochemistry and Photobiology B-Biology 161:236−43 doi: 10.1016/j.jphotobiol.2016.05.029 |
[46] |
Kavanagh KL, Jörnvall H, Persson B, Oppermann U. 2008. Medium- and short-chain dehydrogenase/reductase gene and protein families : the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cellular and Molecular Life Sciences 65:3895−906 doi: 10.1007/s00018-008-8588-y |
[47] |
Zhang S, Heyes DJ, Feng L, Sun W, Johannissen LO, et al. 2019. Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis. Nature 574:722−25 doi: 10.1038/s41586-019-1685-2 |
[48] |
Taylor A, Zhang S, Johannissen LO, Sakuma M, Phillips RS, et al. 2024. Mechanistic implications of the ternary complex structural models for the photoenzyme protochlorophyllide oxidoreductase. The FEBS Journal 291:1404−21 doi: 10.1111/febs.17025 |
[49] |
Schneidewind J, Krause F, Bocola M, Stadler AM, Davari MD, et al. 2019. Consensus model of a cyanobacterial light-dependent protochlorophyllide oxidoreductase in its pigment-free apo-form and photoactive ternary complex. Communications Biology 2:351 doi: 10.1038/s42003-019-0590-4 |
[50] |
Floris D, Kühlbrandt W. 2021. Molecular landscape of etioplast inner membranes in higher plants. Nature Plants 7:514−23 doi: 10.1038/s41477-021-00896-z |
[51] |
Savchenko GE, Klyuchareva EA, Stupak AP. 2003. Fluorescence of the protein of the prolamellar bodies of etioplasts. Journal of Applied Spectroscopy 70:907−12 doi: 10.1023/B:JAPS.0000016310.66731.0e |
[52] |
Cazzonelli CI, Hou X, Alagoz Y, Rivers J, Dhami N, et al. 2020. A cis-carotene derived apocarotenoid regulates etioplast and chloroplast development. eLife 9:e45310 doi: 10.7554/eLife.45310 |
[53] |
Myśliwa-Kurdziel B, Turek E, Malec P. 2013. Protochlorophyllide forms in etiolated seedlings of photoreceptor mutants of Arabidopsis thaliana — Is chlorophyll biosynthesis controlled by cooperation between phytochromes and phototropins? In Photosynthesis Research for Food, Fuel and the Future. Advanced Topics in Science and Technology in China. Berlin, Heidelberg: Springer. pp. 381−84. DOI: 10.1007/978-3-642-32034-7_79 |
[54] |
Heyes DJ, Hardman SJO, Hedison TM, Hoeven R, Greetham GM, et al. 2015. Excited-state charge separation in the photochemical mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Angewandte Chemie International Edition 54:1512−15 doi: 10.1002/anie.201409881 |
[55] |
Reinbothe S, Gray J, Rustgi S, von Wettstein D, Reinbothe C. 2015. Cell growth defect factor 1 is crucial for the plastid import of NADPH: protochlorophyllide oxidoreductase A in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 112:5838−43 doi: 10.1073/pnas.1506339112 |
[56] |
Kim C, Ham H, Apel K. 2005. Multiplicity of different cell- and organ-specific import routes for the NADPH-protochlorophyllide oxidoreductases A and B in plastids of Arabidopsis seedlings. The Plant Journal 42:329−40 doi: 10.1111/j.1365-313X.2005.02374.x |
[57] |
Aronsson H, Sundqvist C, Dahlin C. 2003. POR hits the road: import and assembly of a plastid protein. Plant Molecular Biology 51:1−7 doi: 10.1023/A:1020795415631 |
[58] |
Reinbothe S, Pollmann S, Springer A, James RJ, Tichtinsky G, et al. 2005. A role of Toc33 in the protochlorophyllide-dependent plastid import pathway of NADPH: protochlorophyllide oxidoreductase (POR) A. The Plant Journal 42:1−12 doi: 10.1111/j.1365-313X.2005.02353.x |
[59] |
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, et al. 2019. A protochlorophyllide (Pchlide) a oxygenase for plant viability. Frontiers in Plant Science 10:593 doi: 10.3389/fpls.2019.00593 |
[60] |
Lee JY, Lee HS, Song JY, Jung YJ, Reinbothe S, et al. 2013. Cell growth defect factor1/CHAPERONE-LIKE PROTEIN OF POR1 plays a role in stabilization of light-dependent protochlorophyllide oxidoreductase in Nicotiana benthamiana and Arabidopsis. The Plant Cell 25:3944−60 doi: 10.1105/tpc.113.111096 |
[61] |
Herbst J, Pang X, Roling L, Grimm B. 2024. A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis. Journal of Experimental Botany 75:2027−45 doi: 10.1093/jxb/erad491 |
[62] |
Hanf R, Fey S, Schmitt M, Hermann G, Dietzek B, et al. 2012. Catalytic efficiency of a photoenzyme − an adaptation to natural light conditions. ChemPhysChem 13:2013−15 doi: 10.1002/cphc.201200194 |
[63] |
Kósa A, Böddi B. 2012. Dominance of a 675 nm chlorophyll(ide) form upon selective 632.8 or 654 nm laser illumination after partial protochlorophyllide phototransformation. Photosynthesis Research 114:111−20 doi: 10.1007/s11120-012-9782-1 |
[64] |
Lebedev N, Karginova O, McIvor W, Timko MP. 2001. Tyr275 and Lys279 stabilize NADPH within the catalytic site of NADPH: protochlorophyllide oxidoreductase and are involved in the formation of the enzyme photoactive state. Biochemistry 40:12562−74 doi: 10.1021/bi0105025 |
[65] |
Menon BRK, Davison PA, Hunter CN, Scrutton NS, Heyes DJ. 2010. Mutagenesis alters the catalytic mechanism of the light-driven enzyme protochlorophyllide oxidoreductase. Journal of Biological Chemistry 285:2113−19 doi: 10.1074/jbc.M109.071522 |
[66] |
Liu R, Wang L, Meng Y, Li F, Nie H, Lu H. 2022. Role of thylakoid lipids in protochlorophyllide oxidoreductase activation: allosteric mechanism elucidated by a computational study. International Journal of Molecular Sciences 24:307 doi: 10.3390/ijms24010307 |
[67] |
Fujii S, Kobayashi K, Nagata N, Masuda T, Wada H. 2018. Digalactosyldiacylglycerol Is Essential for Organization of the Membrane Structure in Etioplasts. Plant Physiology 177:1487−97 doi: 10.1104/pp.18.00227 |
[68] |
Kauss D, Bischof S, Steiner S, Apel K, Meskauskiene R. 2012. FLU, a negative feedback regulator of tetrapyrrole biosynthesis, is physically linked to the final steps of the Mg++-branch of this pathway. FEBS Letters 586:211−16 doi: 10.1016/j.febslet.2011.12.029 |
[69] |
Hey D, Rothbart M, Herbst J, Wang P, Müller J, et al. 2017. LIL3, a Light-Harvesting Complex Protein, Links Terpenoid and Tetrapyrrole Biosynthesis in Arabidopsis thaliana. Plant Physiology 174:1037−50 doi: 10.1104/pp.17.00505 |
[70] |
Kovacheva S, Ryberg M, Sundqvist C. 2000. ADP/ATP and protein phosphorylation dependence of phototransformable protochlorophyllide in isolated etioplast membranes. Photosynthesis Research 64:127−36 doi: 10.1023/A:1006451824312 |
[71] |
Wang F, Yan J, Chen X, Jiang C, Liu Y, et al. 2019. Light regulation of chlorophyll biosynthesis in plants. Journal of Horticulture 46:975−94 |
[72] |
Valdés AE, Rizzardi K, Johannesson H, Para A, Sundås-Larsson A, et al. 2012. Arabidopsis thaliana TERMINAL FLOWER2 is involved in light-controlled signalling during seedling photomorphogenesis. Plant, Cell and Environment 35:1013−25 doi: 10.1111/j.1365-3040.2011.02468.x |
[73] |
Brouwer B, Gardeström P, Keech O. 2014. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis. Journal of Experimental Botany 65:4037−49 doi: 10.1093/jxb/eru060 |
[74] |
Lim J, Park JH, Jung S, Hwang D, Nam HG, et al. 2018. Antagonistic roles of PhyA and PhyB in far-red light-dependent leaf senescence in Arabidopsis thaliana. Plant & Cell Physiology 59:1753−64 doi: 10.1093/pcp/pcy153 |
[75] |
Alameldin HF, Oh S, Hernandez AP, Montgomery BL. 2020. Nuclear-encoded sigma factor 6 (SIG6) is involved in the block of greening response in Arabidopsis thaliana. American Journal of Botany 107:329−38 doi: 10.1002/ajb2.1423 |
[76] |
Liang M, Gu D, Lie Z, Yang Y, Lu L, et al. 2023. Regulation of chlorophyll biosynthesis by light-dependent acetylation of NADPH: protochlorophyll oxidoreductase A in Arabidopsis. Plant Science 330:111641 doi: 10.1016/j.plantsci.2023.111641 |
[77] |
Moon J, Zhu L, Shen H, Huq E. 2008. PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 105:9433−38 doi: 10.1073/pnas.0803611105 |
[78] |
Liu X, Chen CY, Wang KC, Luo M, Tai R, et al. 2013. PHYTOCHROME INTERACTING FACTOR3 associates with the histone deacetylase HDA15 in repression of chlorophyll biosynthesis and photosynthesis in etiolated Arabidopsis seedlings. The Plant Cell 25:1258−73 doi: 10.1105/tpc.113.109710 |
[79] |
Cheminant S, Wild M, Bouvier F, Pelletier S, Renou JP, et al. 2011. DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis. The Plant Cell 23:1849−60 doi: 10.1105/tpc.111.085233 |
[80] |
Ma Z, Hu X, Cai W, Huang W, Zhou X, et al. 2014. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genetics 10:e1004519 doi: 10.1371/journal.pgen.1004519 |
[81] |
Toledo-Ortiz G, Johansson H, Lee KP, Bou-Torrent J, Stewart K, et al. 2014. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription. PLoS Genetics 10:e1004416 doi: 10.1371/journal.pgen.1004416 |
[82] |
Sperling U, Franck F, van Cleve B, Frick G, Apel K, et al. 1998. Etioplast differentiation in Arabidopsis: both PORA and PORB restore the prolamellar body and photoactive protochlorophyllide-F655 to the cop1 photomorphogenic mutant. The Plant Cell 10:283−96 doi: 10.1105/tpc.10.2.283 |
[83] |
Cackett L, Luginbuehl LH, Schreier TB, Lopez-Juez E, Hibberd JM. 2022. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist 233:2000−16 doi: 10.1111/nph.17839 |
[84] |
Zhong S, Zhao M, Shi T, Shi H, An F, et al. 2009. EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings. Proceedings of the National Academy of Sciences of the United States of America 106:21431−36 doi: 10.1073/pnas.0907670106 |
[85] |
Kusnetsov V, Herrmann RG, Kulaeva ON, Oelmüller R. 1998. Cytokinin stimulates and abscisic acid inhibits greening of etiolated Lupinus luteus cotyledons by affecting the expression of the light-sensitive protochlorophyllide oxidoreductase. Molecular & General Genetics 259:21−28 doi: 10.1007/pl00008626 |
[86] |
Luo WG, Liang QW, Su Y, Huang C, Mo BX, et al. 2023. Auxin inhibits chlorophyll accumulation through ARF7-IAA14-mediated repression of chlorophyll biosynthesis genes in Arabidopsis. Frontiers in Plant Science 14:1172059 doi: 10.3389/fpls.2023.1172059 |
[87] |
Zhong S, Shi H, Xue C, Wei N, Guo H, et al. 2014. Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proceedings of the National Academy of Sciences of the United States of America 111:3913−20 doi: 10.1073/pnas.1402491111 |
[88] |
Xu G, Guo H, Zhang D, Chen D, Jiang Z, et al. 2015. REVEILLE1 promotes NADPH: protochlorophyllide oxidoreductase A expression and seedling greening in Arabidopsis. Photosynthesis Research 126:331−40 doi: 10.1007/s11120-015-0146-5 |
[89] |
Turan S, Tripathy BC. 2015. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. Physiologia Plantarum 153:477−91 doi: 10.1111/ppl.12250 |
[90] |
Dalal VK, Tripathy BC. 2012. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell & Environment 35:1685−703 doi: 10.1111/j.1365-3040.2012.02520.x |
[91] |
Wen B, Liu W, Yang W. 2019. Two strategies of plants facing shade: advances in the mechanisms of shade avoidance and shade tolerance responses. Molecular Plant Breeding 17:1028−33 doi: 10.13271/j.mpb.017.001028 |
[92] |
Fan Y, Chen J, Wang Z, Tan T, Li S, et al. 2019. Soybean (Glycine max L. Merr.) seedlings response to shading: leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology 19:34 doi: 10.1186/s12870-019-1633-1 |
[93] |
Yang F, Liu Q, Cheng Y, Feng L, Wu X, et al. 2020. Low red/far-red ratio as a signal promotes carbon assimilation of soybean seedlings by increasing the photosynthetic capacity. BMC Plant Biology 20:148 doi: 10.1186/s12870-020-02352-0 |
[94] |
Yang F, Feng L, Liu Q, Wu X, Fan Y, et al. 2018. Effect of interactions between light intensity and red-to- far-red ratio on the photosynthesis of soybean leaves under shade condition. Environmental and Experimental Botany 150:79−87 doi: 10.1016/j.envexpbot.2018.03.008 |
[95] |
Liu X, Li L, Li M, Su L, Lian S, et al. 2018. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Scientific Reports 8:2250 doi: 10.1038/s41598-018-20542-7 |
[96] |
Li YH, Sun ZL, Xu XL, Jin M, Liu YJ, et al. 2010. Influence of low temperatures on photosystem II photochemistry and expression of the NADPH: protochlorophyllide oxidoreductase in the alpine, subnival perennial, Chorispora bungeana. Photosynthetica 48:457−68 doi: 10.1007/s11099-010-0060-1 |
[97] |
Mohanty S, Grimm B, Tripathy BC. 2006. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta 224:692−99 doi: 10.1007/s00425-006-0248-6 |
[98] |
Wu Q, Chen Z, Sun W, Deng T, Chen M. 2016. De novo sequencing of the leaf transcriptome reveals complex light-responsive regulatory networks in Camellia sinensis cv. Baijiguan. Frontiers in Plant Science 7:332 doi: 10.3389/fpls.2016.00332 |
[99] |
Wang Q, Ning Z, Awan SA, Gao J, Chen J, et al. 2023. Far-red light mediates light energy capture and distribution in soybeans (Glycine max L.) under the shade. Plant Physiology and Bioche mistry 204:108130 doi: 10.1016/j.plaphy.2023.108130 |
[100] |
Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, et al. 2013. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. The Plant Journal 74:122−33 doi: 10.1111/tpj.12110 |
[101] |
Kumar Tewari A, Charan Tripathy B. 1998. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. Plant Physiology 117:851−58 doi: 10.1104/pp.117.3.851 |
[102] |
Zhao M, Yuan L, Wang J, Xie S, Zheng Y, et al. 2019. Transcriptome analysis reveals a positive effect of brassinosteroids on the photosynthetic capacity of wucai under low temperature. BMC Genomics 20:810 doi: 10.1186/s12864-019-6191-2 |
[103] |
Wang H, Liu Z, Luo S, Li J, Zhang J, et al. 2021. 5-Aminolevulinic acid and hydrogen sulphide alleviate chilling stress in pepper (Capsicum annuum L.) seedlings by enhancing chlorophyll synthesis pathway. Plant Physiology and Biochemistry 167:567−76 doi: 10.1016/j.plaphy.2021.08.031 |
[104] |
Zhou S, Hu Z, Zhu M, Zhang B, Deng L, et al. 2013. Biochemical and molecular analysis of a temperature-sensitive albino mutant in kale named “White Dove”. Plant Growth Regulation 71:281−94 doi: 10.1007/s10725-013-9829-0 |
[105] |
Liu XG, Xu H, Zhang JY, Liang GW, Liu YT, et al. 2012. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85. Physiologia Plantarum 145:384−94 doi: 10.1111/j.1399-3054.2012.01604.x |
[106] |
Catalá R, Medina J, Salinas J. 2011. Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 108:16475−80 doi: 10.1073/pnas.1107161108 |
[107] |
Yuan L, Zhang L, Wu Y, Zheng Y, Nie L, et al. 2021. Comparative transcriptome analysis reveals that chlorophyll metabolism contributes to leaf color changes in wucai (Brassica campestris L.) in response to cold. BMC Plant Biology 21:438 doi: 10.1186/s12870-021-03218-9 |
[108] |
Du J, Wang J, Shan S, Mi T, Song Y, et al. 2023. Low-Temperature-Mediated Promoter Methylation Relates to the Expression of TaPOR2D, Affecting the Level of Chlorophyll Accumulation in Albino Wheat (Triticum aestivum L.). International Journal of Molecular Sciences 24:14697 doi: 10.3390/ijms241914697 |
[109] |
Mishra D, Shekhar S, Chakraborty S, Chakraborty N. 2021. Wheat 2-Cys peroxiredoxin plays a dual role in chlorophyll biosynthesis and adaptation to high temperature. The Plant Journal 105:1374−89 doi: 10.1111/tpj.15119 |
[110] |
Xing X, Ding Y, Jin J, Song A, Chen S, et al. 2021. Physiological and Transcripts Analyses Reveal the Mechanism by Which Melatonin Alleviates Heat Stress in Chrysanthemum Seedlings. Frontiers in Plant Science 12:673236 doi: 10.3389/fpls.2021.673236 |
[111] |
Ha JH, Lee HJ, Jung JH, Park CM. 2017. Thermo-induced maintenance of photo-oxidoreductases underlies plant autotrophic development. Developmental Cell 41:170−179.e4 doi: 10.1016/j.devcel.2017.03.005 |
[112] |
Abdelaziz ME, Atia MAM, Abdelsattar M, Abdelaziz SM, Ibrahim TAA, et al. 2021. Unravelling the role of Piriformospora indica in combating water deficiency by modulating physiological performance and chlorophyll metabolism-related genes in Cucumis sativus. Horticulturae 7:399 doi: 10.3390/horticulturae7100399 |
[113] |
Shah AA, Yasin NA, Mudassir M, Ramzan M, Hussain I, et al. 2022. Iron oxide nanoparticles and selenium supplementation improve growth and photosynthesis by modulating antioxidant system and gene expression of chlorophyll synthase (CHLG) and protochlorophyllide oxidoreductase (POR) in arsenic-stressed Cucumis melo. Environmental Pollution 307:119413 doi: 10.1016/j.envpol.2022.119413 |