[1]

Tang D, Dong Y, Ren H, Li L, He C. 2014. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal 8:4

doi: 10.1186/1752-153X-8-4
[2]

Boote K J, Jones JW, Hoogenboom G. 1998. Simulation of crop growth: CROPGRO model. In Agricultural Systems Modeling and Simulation, eds. Peart RM, Curr RB. Boca Raton: CRC Press. pp. 651–92. https://doi.org/10.1201/9781482269765

[3]

Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, et al. 1998. STICS: a generic model for simulation of crops and their water and nitrogen balances. 1. Theory and parameterisation applied to wheat and corn. Agronomie 18:311−46

doi: 10.1051/agro:19980501
[4]

Williams JR, Jones CA, Kiniry JR, Spanel DA. 1989. The EPIC crop growth model. Transactions of the American Society of Agricultural Engineers 32:497−511

doi: 10.13031/2013.31032
[5]

Telen D, Logist F, Derlinden EV, Impe JF. 2013. On the trade-off between experimental effort and information content in optimal experimental design for calibrating a predictive microbiology model. Journal de la Société Franç aise de Statistique 154(3):95−112

[6]

Sinclair T R. 1986. Water and nitrogen limitations in soybean grain production I. Model development. Field Crops Research 15:125−41

doi: 10.1016/0378-4290(86)90082-1
[7]

Sinclair TR, Muchow RC, Ludlow MM, Leach GJ, Lawn RJ, et al. 1987. Field and model analysis of the effect of water deficit on carbon and nitrogen accumulation by soybean, cowpea and black gram. Field Crops Research 17:121−40

doi: 10.1016/0378-4290(87)90087-6
[8]

Soltani A, Sinclair T R. 2011. A simple model for chickpea development, growth and yield. Field Crops Research 124:252−60

doi: 10.1016/j.fcr.2011.06.021
[9]

Holzworth DP, Huth NI, de Voil PG, Zurcher EJ, Herrmann NI, et al. 2014. APSIM - evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software 62:327−50

doi: 10.1016/j.envsoft.2014.07.009
[10]

Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, et al. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18:267−88

doi: 10.1016/S1161-0301(02)00108-9
[11]

Carberry PS, Probert ME, Dimes J P, Keating B A. McCown R L. , 2002. Role of modelling in improving nutrient efficiency in cropping systems. In Food Security in Nutrient-Stressed Environments: Exploiting Plants' Genetic Capabilities. Developments in Plant and Soil Sciences, ed. Adu-Gyamfi JJ. vol 95. Dordrecht: Springer. https://doi.org/10.1007/978-94-017-1570-6_34

[12]

Whitbread AM, Robertson MJ, Carberry PS, Dimes JP. 2010. How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. European Journal of Agronomy 32(1):52−58

doi: 10.1016/j.eja.2009.05.004
[13]

Hochman Z, Prestwidge D, Carberry PS. 2014. Crop sequences in Australia’s northern grain zone are less agronomically efficient than implied by the sum of their parts. Agricultural Systems 129:124−32

doi: 10.1016/j.agsy.2014.06.001
[14]

McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP, Freebairn DM. 1996. APSIM: a novel software system for model development, model testing and simulation in agricultural systems research. Agricultural Systems 50(3):255−71

doi: 10.1016/0308-521X(94)00055-V
[15]

Ritchie JT. 1986. Model inputs. In CERES-Maize: A Simulation Model of Maize Growth and Development, eds. Jones CA, Kiniry JR. College Station, TX: Texas A&M University Press. pp. 37–48.

[16]

Ritchie JT. 1991. Specifications of the ideal model for predicting crop yields. In Climatic risk in crop production: models and management for the semiarid tropics and subtropics, eds. Muchow RC, Bellamy JA. Wallingford, UK: CAB International. pp. 97–122.

[17]

Jiang Z, Zhang J, Yang C, Rao Y, Liu S. 2016. Performance of classic multiple factor analysis and model fitting in crop modeling. International Journal of Agricultural and Biological Engineering 9:119−26

[18]

Silva RS, Kumar L, Shabani F, Picanço MC. 2018. An analysis of sensitivity of CLIMEX parameters in mapping species potential distribution and the broad-scale changes observed with minor variations in parameters values: an investigation using open-field Solanum lycopersicum and Neoleucinodes elegantalis as an example. Theoretical and Applied Climatology 132:135−44

doi: 10.1007/s00704-017-2072-2
[19]

Robertson MJ, Carberry PS, Huth NI, Turpin JE, Probert ME, et al. 2002. Simulation of growth and development of diverse legume species in APSIM. Australian Journal of Agricultural Research 53:429−46

doi: 10.1071/ar01106
[20]

Bhatia VS, Singh P, Wani SP, Chauhan GS, Rao AVRK, et al. 2008. Analysis of potential yields and yield gaps of rainfed soybean in India using CROPGRO-Soybean model. Agricultural Forest Meteorology 148:1252−65

doi: 10.1016/j.agrformet.2008.03.004
[21]

Huang Y, Yu Y, Zhang W, Sun W, Liu S, et al. 2009. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agricultural Forest Meteorology 149:106−29

doi: 10.1016/j.agrformet.2008.07.013
[22]

Wallach D, Goffinet B. 1987. Mean squared error of prediction in models for studying ecological and agronomic systems. Biometrics 43(3):561−73

doi: 10.2307/2531995
[23]

Willmott C J. 1982. Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society 3(11):1309−13

[24]

Brisson N, Ruget F, Gate P, Lorgeou J, Nicoullaud B, et al. 2002. STICS: a generic model for simulating crops and their water and nitrogen balances. II. Model validation for wheat and maize. Agronomie 22:69−92

doi: 10.1051/agro:2001005
[25]

Chauhan Y, Douglas C, Rachaputi R, Agius P, Martin W, et al. 2010. Physiology of mungbean and development of the mungbean crop model. In Proceedings of the 1st Australian Summer Grains Conference, Gold Coas, Australia, 21–24 June 2010. Collingwood, Australia: CSIRO.

[26]

Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, et al. 2010. Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany 61(8):2185−202

doi: 10.1093/jxb/erq095