[1] |
Rakkammal K, Priya A, Pandian S, Maharajan T, Rathinapriya P, et al. 2022. Conventional and omics approaches for understanding the abiotic stress response in cereal crops—an updated overview. Plants 11:2852 doi: 10.3390/plants11212852 |
[2] |
Mundia CW, Secchi S, Akamani K, Wang G. 2019. A regional comparison of factors affecting global Sorghum production: the case of North America, Asia and africa’s Sahel. Sustainability 11:2135 doi: 10.3390/su11072135 |
[3] |
Hossain MS, Islam MN, Rahman MM, Mostofa MG, Khan MAR. 2022. Sorghum: a prospective crop for climatic vulnerability, food and nutritional security. Journal of Agriculture and Food Research 8:100300 doi: 10.1016/j.jafr.2022.100300 |
[4] |
Nwosu LC, Edo GI, Özgör E. 2022. The phytochemical, proximate, pharmacological, GC-MS analysis of Cyperus esculentus (Tiger nut): a fully validated approach in health, food and nutrition. Food Bioscience 46:101551 doi: 10.1016/j.fbio.2022.101551 |
[5] |
Bouchard J, Malalgoda M, Storsley J, Malunga L, Netticadan T, et al. 2022. Health benefits of cereal grain- and pulse-derived proteins. Molecules 27:3746 doi: 10.3390/molecules27123746 |
[6] |
Dabija A, Ciocan ME, Chetrariu A, Codină GG. 2021. Maize and Sorghum as raw materials for brewing, a review. Applied Sciences 11:3139 doi: 10.3390/app11073139 |
[7] |
Onyibe PN, Edo GI, Nwosu LC, Ozgor E. 2021. Effects of vernonia amygdalina fractionate on glutathione reductase and glutathione-S-transferase on alloxan induced diabetes wistar rat. Biocatalysis and Agricultural Biotechnology 36:102118 doi: 10.1016/j.bcab.2021.102118 |
[8] |
Ojha P, Adhikari R, Karki R, Mishra A, Subedi U, et al. 2018. Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Science & Nutrition 6:47−53 doi: 10.1002/fsn3.525 |
[9] |
Edo GI. 2022. Antibacterial, phytochemical and GC-MS analysis of Thevetia peruviana extracts: an approach in drug formulation. Natural Resources for Human Health 2:418−26 doi: 10.53365/nrfhh/146543 |
[10] |
Alemayehu GF, Forsido SF, Tola YB, Teshager MA, Assegie AA, et al. 2021. Proximate, mineral and anti-nutrient compositions of oat grains (Avena sativa) cultivated in Ethiopia: implications for nutrition and mineral bioavailability. Heliyon 7:e07722 doi: 10.1016/j.heliyon.2021.e07722 |
[11] |
Edo GI, Makinde MG, Nwosu LC, Ozgor E, Akhayere E. 2022. Physicochemical and pharmacological properties of palm oil: an approach for quality, safety, and nutrition evaluation of palm oil. Food Analytical Methods 15:2290−305 doi: 10.1007/s12161-022-02293-4 |
[12] |
Grases F, Costa-Bauza A. 2019. Key aspects of myo-inositol hexaphosphate (phytate) and pathological calcifications. Molecules 24:4434 doi: 10.3390/molecules24244434 |
[13] |
Akpoghelie PO, Edo GI, Akhayere E. 2022. Proximate and nutritional composition of beer produced from malted sorghum blended with yellow cassava. Biocatalysis and Agricultural Biotechnology 45:102535 doi: 10.1016/j.bcab.2022.102535 |
[14] |
Poutanen KS, Kårlund AO, Gómez-Gallego C, Johansson DP, Scheers NM, et al. 2022. Grains – a major source of sustainable protein for health. Nutrition Reviews 80:1648−63 doi: 10.1093/nutrit/nuab084 |
[15] |
Li M, Niu M. 2023. New technologies in cereal processing and their impact on the physical properties of cereal foods. Foods 12:4008 doi: 10.3390/foods12214008 |
[16] |
Mollakhalili-Meybodi N, Arab M, Nematollahi A, Mousavi Khaneghah A. 2021. Prebiotic wheat bread: technological, sensorial and nutritional perspectives and challenges. LWT 149:111823 doi: 10.1016/j.lwt.2021.111823 |
[17] |
Edo GI, Onoharigho FO, Akpoghelie PO, Emakpor OL, Ozgor E, et al. 2022. Physicochemical, phytochemical, antioxidant, and inhibition properties of key enzymes linked to raw and regular honey. Chemistry Africa 5:1351−64 doi: 10.1007/s42250-022-00401-9 |
[18] |
Fox GP, Bettenhausen HM. 2023. Variation in quality of grains used in malting and brewing. Frontiers in Plant Science 14:1172028 doi: 10.3389/fpls.2023.1172028 |
[19] |
Bera S, Sabikhi L, Singh AK. 2018. Assessment of malting characteristics of different Indian barley cultivars. Journal of Food Science and Technology 55:704−11 doi: 10.1007/s13197-017-2981-1 |
[20] |
Ogheneoruese Onoharigho F, Ahuose Ighede P, Edo GI, Othuke Akpoghelie P, Oghenekome Akpoghelie E. 2022. Isolation and identification of bacterial and fungal spoilage organisms in branded and unbranded milk; consumer perception of safety hazard for milk. Applied Microbiology: Theory & Technology 3(2):31−48 doi: 10.37256/amtt.3220221766 |
[21] |
Tanwar R, Panghal A, Chaudhary G, Kumari A, Chhikara N. 2023. Nutritional, phytochemical and functional potential of sorghum: a review. Food Chemistry Advances 3:100501 doi: 10.1016/j.focha.2023.100501 |
[22] |
Keyata EO, Tola YB, Bultosa G, Forsido SF. 2021. Premilling treatments effects on nutritional composition, antinutritional factors, and in vitro mineral bioavailability of the improved Assosa I Sorghum variety (Sorghum bicolor L.). Food Science & Nutrition 9:1929−38 doi: 10.1002/fsn3.2155 |
[23] |
Owheruo JO, Akpoghelie PO, Edo GI, Ojulari AE, Agbo JJ. 2023. Proximate, mineral, sensorial and microbiological properties of chin-chin produced from okra seed and wheat flour blends. Food Chemistry Advances 2:100298 doi: 10.1016/j.focha.2023.100298 |
[24] |
Ikuemonisan ES, Mafimisebi TE, Ajibefun I, Adenegan K. 2020. Cassava production in Nigeria: trends, instability and decomposition analysis (1970–2018). Heliyon 6:e05089 doi: 10.1016/j.heliyon.2020.e05089 |
[25] |
Ayetigbo O, Latif S, Abass A, Müller J. 2018. Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: a review. Sustainability 10:3089 doi: 10.3390/su10093089 |
[26] |
Afolami I, Samuel F, Borgonjen-van den Berg K, Mwangi MN, Kalejaiye O, et al. 2021. The contribution of provitamin A biofortified cassava to vitamin A intake in Nigerian pre-schoolchildren. British Journal of Nutrition 126:1364−72 doi: 10.1017/s0007114521000039 |
[27] |
Iruoghene Edo G. 2022. Analysis of phytochemical constituents and antioxidant potential of bitter kola leaf extract towards bioactive food, nutrition and health resources. Organic & Medicinal Chemistry International Journal 11(5):555823 doi: 10.19080/omcij.2022.11.555823 |
[28] |
Bechoff A, Chijioke U, Westby A, Tomlins KI. 2018. ‘Yellow is good for you’: consumer perception and acceptability of fortified and biofortified cassava products. PLoS One 13:e0203421 doi: 10.1371/journal.pone.0203421 |
[29] |
Mohidin SRNSP, Moshawih S, Hermansyah A, Asmuni MI, Shafqat N, et al. 2023. Cassava (Manihot esculenta crantz): a systematic review for the pharmacological activities, traditional uses, nutritional values, and phytochemistry. Journal of Evidence-Based Integrative Medicine 28:2515690X231206227 doi: 10.1177/2515690x231206227 |
[30] |
Lefyedi ML, Marais GJ, Dutton MF, Taylor JRN. 2005. The microbial contamination, toxicity and quality of turned and unturned outdoor floor malted Sorghum. Journal of the Institute of Brewing 111:190−96 doi: 10.1002/j.2050-0416.2005.tb00665.x |
[31] |
Mæhre H, Dalheim L, Edvinsen G, Elvevoll E, Jensen IJ. 2018. Protein determination—method matters. Foods 7:5 doi: 10.3390/foods7010005 |
[32] |
Miteu GD, Ezeh BC. 2022. Effects of roasting periods on the nutritive value of telfaira occidentalis (fluted pumpkin) seeds. IPS Journal of Nutrition and Food Science 1:6−10 doi: 10.54117/ijnfs.v1i1.2 |
[33] |
Filipiak-Szok A, Kurzawa M, Szłyk E. 2016. Simultaneous determination of selected anti-nutritional components in Asiatic plants using ion chromatography. European Food Research and Technology 242:1515−21 doi: 10.1007/s00217-016-2652-x |
[34] |
Narola B, Singh AS, Mitra M, Santhakumar PR, Chandrashekhar TG. 2011. A Validated Reverse Phase HPLC Method for the Determination of Disodium EDTA in Meropenem Drug Substance with UV-Detection using Precolumn Derivatization Technique. Analytical Chemistry Insights 6:ACI.S5953 doi: 10.4137/aci.s5953 |
[35] |
Ganesh S, Khan F, Ahmed MK, Velavendan P, Pandey NK, et al. 2012. Spectrophotometric determination of trace amounts of phosphate in water and soil. Water Science and Technology 66:2653−58 doi: 10.2166/wst.2012.468 |
[36] |
Garcia RA, Vanelli CP, dos Santos Pereira O Jr, do Amaral Corrêa JO. 2018. Comparative analysis for strength serum sodium and potassium in three different methods: flame photometry, ion-selective electrode (ISE) and colorimetric enzymatic. Journal of Clinical Laboratory Analysis 32:1−8 doi: 10.1002/jcla.22594 |
[37] |
Agarussi MCN, Pereira OG, Pimentel FE, Azevedo CF, da Silva VP, et al. 2022. Microbiome of rehydrated corn and sorghum grain silages treated with microbial inoculants in different fermentation periods. Scientific Reports 12:16864 doi: 10.1038/s41598-022-21461-4 |
[38] |
Kuramae EE, Derksen S, Schlemper TR, Dimitrov MR, Costa OYA, et al. 2020. Sorghum growth promotion by Paraburkholderia tropica and Herbaspirillum frisingense: putative mechanisms revealed by genomics and metagenomics. Microorganisms 8:725 doi: 10.3390/microorganisms8050725 |
[39] |
Byakika S, Mukisa IM, Byaruhanga YB. 2020. Sorghum malt extract as a growth medium for lactic acid bacteria cultures: a case of Lactobacillus plantarum MNC 21. International Journal of Microbiology 2020:6622207 doi: 10.1155/2020/6622207 |
[40] |
Xolo T, Keyser Z, A Jideani V. 2024. Physicochemical and microbiological changes during two-stage fermentation production of umqombothi. Heliyon 10:e24522 doi: 10.1016/j.heliyon.2024.e24522 |
[41] |
Alegbeleye O, Odeyemi OA, Strateva M, Stratev D. 2022. Microbial spoilage of vegetables, fruits and cereals. Applied Food Research 2:100122 doi: 10.1016/j.afres.2022.100122 |
[42] |
Li K, Qiao K, Xiong J, Guo H, Zhang Y. 2023. Nutritional values and bio-functional properties of fungal proteins: applications in foods as a sustainable source. Foods 12:4388 doi: 10.3390/foods12244388 |
[43] |
Jaffar NS, Jawan R, Chong KP. 2023. The potential of lactic acid bacteria in mediating the control of plant diseases and plant growth stimulation in crop production - A mini review. Frontiers in Plant Science 13:1047945 doi: 10.3389/fpls.2022.1047945 |
[44] |
Byakika S, Mukisa IM, Byaruhanga YB. 2021. Characterizing selected Sorghum grain varieties and evaluating the suitability of their malt extracts for cultivating microbial biomass. International Journal of Food Science 2021:6658358 doi: 10.1155/2021/6658358 |
[45] |
Kazimierska K, Biel W, Witkowicz R, Karakulska J, Stachurska X. 2021. Evaluation of nutritional value and microbiological safety in commercial dog food. Veterinary Research Communications 45:111−28 doi: 10.1007/s11259-021-09791-6 |
[46] |
Babič M, Gunde-Cimerman N, Vargha M, Tischner Z, Magyar D, et al. 2017. Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. International Journal of Environmental Research and Public Health 14:636 doi: 10.3390/ijerph14060636 |
[47] |
Adebayo-Oyetoro AO, Oyewole OB, Obadina AO, Omemu MA. 2013. Microbiological safety assessment of fermented cassava flour "Lafun" available in ogun and oyo states of Nigeria. International Journal of Food Science 2013:845324 doi: 10.1155/2013/845324 |
[48] |
Mgomi FC, Yang YR, Cheng G, Yang ZQ. 2023. Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm 5:100118 doi: 10.1016/j.bioflm.2023.100118 |
[49] |
Hwabejire HO, Akpoghelie PO, Edo GI, Onoharigho FO, Agbo JJ. 2024. Microbiological properties, anti-nutritional and nutritional composition of spontaneously and starter culture fermented malted acha flour. Proceedings of the Indian National Science Academy 90:55−74 doi: 10.1007/s43538-023-00219-0 |
[50] |
Ndudi W, Edo GI, Samuel PO, Jikah AN, Opiti RA, et al. 2024. Traditional fermented foods of Nigeria: microbiological safety and health benefits. Journal of Food Measurement and Characterization doi: 10.1007/s11694-024-02490-1 |
[51] |
Yang W, Zhu K, Guo X. 2022. Effect of bacteria content in wheat flour on storage stability of fresh wet noodles. Foods 11:3093 doi: 10.3390/foods11193093 |
[52] |
Nwachukwu SC, Edo GI, Jikah AN, Emakpor OL, Akpoghelie PO, et al. 2024. Recent advances in the role of mass spectrometry in the analysis of food: a review. Journal of Food Measurement and Characterization doi: 10.1007/s11694-024-02492-z |
[53] |
Coelho E, Ballesteros LF, Domingues L, Vilanova M, Teixeira JA. 2020. Production of a distilled spirit using cassava flour as raw material: chemical characterization and sensory profile. Molecules 25:3228 doi: 10.3390/molecules25143228 |
[54] |
Bantadjan Y, Rittiron R, Malithong K, Narongwongwattana S. 2020. Rapid starch evaluation in fresh cassava root using a developed portable visible and near-infrared spectrometer. ACS Omega 5:11210−16 doi: 10.1021/acsomega.0c01346 |
[55] |
Zhang Y, Nie L, Sun J, Hong Y, Yan H, et al. 2020. Impacts of environmental factors on pasting properties of cassava flour mediated by its macronutrients. Frontiers in Nutrition 7:598960 doi: 10.3389/fnut.2020.598960 |
[56] |
Ikram A, Saeed F, Afzaal M, Imran A, Niaz B, et al. 2021. Nutritional and end-use perspectives of sprouted grains: a comprehensive review. Food Science & Nutrition 9:4617−28 doi: 10.1002/fsn3.2408 |
[57] |
Akinbile CO, Eze RC, Yusuf H, Ewulo BS, Olayanju A. 2019. Effect of some selected soil properties, moisture content, yield and consumptive water use on two Cassava (TMS 0581 and TME 419) varieties. Journal of Agricultural Engineering doi: 10.4081/jae.2019.919 |
[58] |
Nwokoro CC, Kreye C, Necpalova M, Adeyemi O, Busari M, et al. 2021. Developing recommendations for increased productivity in cassava-maize intercropping systems in Southern Nigeria. Field Crops Research 272:108283 doi: 10.1016/j.fcr.2021.108283 |
[59] |
Forsido SF, Hordofa AA, Ayelign A, Belachew T, Hensel O. 2020. Effects of fermentation and malt addition on the physicochemical properties of cereal based complementary foods in Ethiopia. Heliyon 6:e04606 doi: 10.1016/j.heliyon.2020.e04606 |
[60] |
Galassi E, Gazza L, Nocente F, Kouagang Tchakoutio P, Natale C, et al. 2023. Valorization of two African typical crops, Sorghum and cassava, by the production of different dry pasta formulations. Plants 12:2867 doi: 10.3390/plants12152867 |
[61] |
Adebo JA, Kesa H. 2023. Evaluation of nutritional and functional properties of anatomical parts of two Sorghum (Sorghum bicolor) varieties. Heliyon 9:e17296 doi: 10.1016/j.heliyon.2023.e17296 |
[62] |
Boakye Peprah B, Parkes EY, Harrison OA, van Biljon A, Steiner-Asiedu M, et al. 2020. Proximate composition, cyanide content, and carotenoid retention after boiling of provitamin A-rich cassava grown in Ghana. Foods 9:1800 doi: 10.3390/foods9121800 |
[63] |
Oseguera-Toledo ME, Contreras-Jiménez B, Hernández-Becerra E, Rodriguez-Garcia ME. 2020. Physicochemical changes of starch during malting process of sorghum grain. Journal of Cereal Science 95:103069 doi: 10.1016/j.jcs.2020.103069 |
[64] |
Khoddami A, Mohammadrezaei M, Roberts T. 2017. Effects of Sorghum malting on colour, major classes of phenolics and individual anthocyanins. Molecules 22:1713 doi: 10.3390/molecules22101713 |
[65] |
Chandra P, Enespa, Singh R, Arora PK. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories 19:169 doi: 10.1186/s12934-020-01428-8 |
[66] |
Odoemelam CS, Percival B, Ahmad Z, Chang MW, Scholey D, et al. 2020. Characterization of yellow root cassava and food products: investigation of cyanide and β-carotene concentrations. BMC Research Notes 13:333 doi: 10.1186/s13104-020-05175-2 |
[67] |
Alamu EO, Maziya-Dixon B, Sibeso C, Parkes E, Dixon AG. 2020. Variations of macro- and microelements in yellow-fleshed cassava (Manihot esculenta crantz) genotypes as a function of storage root portion, harvesting time, and sampling method. Applied Sciences 10:5396 doi: 10.3390/app10165396 |
[68] |
Ramírez M, Tenorio MJ, Ramírez C, Jaques A, Nuñez H, et al. 2019. Optimization of hot-air drying conditions for cassava flour for its application in gluten-free pasta formulation. Food Science and Technology International 25:414−28 doi: 10.1177/1082013219828269 |
[69] |
Onyango SO, Abong GO, Okoth MW, Kilalo DC, Mwang’ombe AW. 2021. Effect of pre-treatment and processing on nutritional composition of cassava roots, millet, and cowpea leaves flours. Frontiers in Sustainable Food Systems 5:625735 doi: 10.3389/fsufs.2021.625735 |
[70] |
Baguma M, Migabo C, Nzabara F, Sami WL, Akili CM, et al. 2022. Impact of seasonal variation and processing methods on the cassava-derived dietary cyanide poisoning, nutritional status, and konzo appearance in south-kivu, eastern D.R. Congo. Processes 10:337 doi: 10.3390/pr10020337 |
[71] |
Nkhata SG, Ayua E, Kamau EH, Shingiro JB. 2018. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Science & Nutrition 6:2446−58 doi: 10.1002/fsn3.846 |
[72] |
Zhang Z, Liu C, Wu S, Ma T. 2023. The non-nutritional factor types, mechanisms of action and passivation methods in food processing of kidney bean (Phaseolus vulgaris L.): a systematic review. Foods 12:3697 doi: 10.3390/foods12193697 |
[73] |
Abera S, Yohannes W, Chandravanshi BS. 2023. Effect of processing methods on antinutritional factors (oxalate, phytate, and tannin) and their interaction with minerals (calcium, iron, and zinc) in red, white, and black kidney beans. International Journal of Analytical Chemistry 2023:6762027 doi: 10.1155/2023/6762027 |
[74] |
Yu S, Yu L, Hou Y, Zhang Y, Guo W, et al. 2019. Contrasting effects of NaCl and NaHCO3 stresses on seed germination, seedling growth, photosynthesis, and osmoregulators of the common bean (Phaseolus vulgaris L.). Agronomy 9:409 doi: 10.3390/agronomy9080409 |
[75] |
Udeh HO, Duodu KG, Jideani AIO. 2018. Effect of malting period on physicochemical properties, minerals, and phytic acid of finger millet (Eleusine coracana) flour varieties. Food Science & Nutrition 6:1858−69 doi: 10.1002/fsn3.696 |
[76] |
Lu H, Guo L, Zhang L, Xie C, Li W, et al. 2020. Study on quality characteristics of cassava flour and cassava flour short biscuits. Food Science & Nutrition 8:521−33 doi: 10.1002/fsn3.1334 |