[1]

Companhia Nacional de Abastecimento (CONAB). 2023. Monitoring the Brazilian grain harvest - 2023. www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/905-feijao (Accessed 28 Oct 2023

[2]

Parreira MC, Alves PLCA, Lemos LB, Portugal J. 2014. Comparison of methods to determine the period prior to weed interference in bean plants with different types of growth habits. Planta Daninha 32:727−38

doi: 10.1590/S0100-83582014000400007
[3]

Franceschetti MB, Galon L, Bagnara MAM, Pawelkiewicz R, Brunetto L, et al. 2019. Interference of Urochloa plantaginea on morphophysiology and yield components of black beans. Journal of Agricultural Science 11:272−80

doi: 10.5539/jas.v11n9p272
[4]

Soltani N, Shropshire C, Sikkema PH. 2021. Response of dry beans to tiafenacil applied preemergence. Weed Technology 35:991−94

doi: 10.1017/wet.2021.68
[5]

Cirillo V, Esposito M, Lentini M, Russo C, Pollaro N, et al. 2024. Morpho-physiological adaptations to weed competition impair green bean (Phaseolus vulgaris) ability to overcome moderate salt stress. Functional Plant Biology 51:FP23202

doi: 10.1071/FP23202
[6]

Cury JP, Santos JB, Silva EB, Braga RR, Carvalho FP, et al. 2013. Nutritional efficiency of bean cultivars under competition with weeds. Planta Daninha 31:79−88

doi: 10.1590/S0100-83582013000100009
[7]

Beiermann CW, Miranda JWA, Creech CF, Knezevic SZ, Jhala AJ, et al. 2022. Critical timing of weed removal in dry bean as influenced by the use of preemergence herbicides. Weed Technology 36:168−76

doi: 10.1017/wet.2021.99
[8]

Kalsing A, Vidal RA. 2013. Critical density of alexander grass in common bean. Planta Daninha 31:843−50

doi: 10.1590/S0100-83582013000400010
[9]

Ruigrok T, van Henten EJ, Kootstra G. 2023. Improved generalization of a plant-detection model for precision weed control. Computers and Electronics in Agriculture 204:107554

doi: 10.1016/j.compag.2022.107554
[10]

Naseri B, Nazer Kakhki SH. 2022. Predicting common bean (Phaseolus vulgaris) productivity according to Rhizoctonia root and stem rot and weed development at field plot scale. Frontiers in Plant Science 12:2022

doi: 10.3389/fpls.2022.1038538
[11]

Galon L, Forte CT, Gabiatti RL, Radunz LL, Aspiazú I, et al. 2016. Interference and economic threshold level for control of beggartick on bean cultivars. Planta Daninha 34:411−22

doi: 10.1590/s0100-83582016340300002
[12]

Goudarzi A, Koushki MH. 2023. The effect of cultivar and planting date of white beans (Phaseolus vulgaris L.) on weed population and growth. Crop Science Research in Arid Regions 5:225−40

doi: 10.22034/CSRAR.2023.329007.1188
[13]

Aguiar ACM, Basso CJ, Silva DRO, Gheller DP, Novello BD, et al. 2019. Relative competitiveness of common bean cultivars in coexistence with volunteer corn. Planta Daninha 37:e019182106

doi: 10.1590/s0100-83582019370100097
[14]

Tabatabaiepour SZ, Tahmasebi Z, Taab A, Rashidi-Monfared S. 2023. Effect of redroot pigweed interference on antioxidant enzyme and light response of common bean (Phaseolus vulgaris L.) depends on cultivars and growth stages. Scientific Reports 13:4289

doi: 10.1038/s41598-023-31466-2
[15]

Schiessel JJ, Mello GR, Schmitt J, Pastorello LF, Oliveira Neto AM, et al. 2019. Weeds interference periods in the common bean crop. Revista de Ciências Agroveterinárias 18:430−37

doi: 10.5965/223811711842019430
[16]

Tavares CJ, Jakelaitis A, Rezendel BPM, da Cunha PCR. 2013. Phytosociology of weeds in bean crop. Revista Brasileira de Ciências Agrárias 8:27−32

doi: 10.5039/agraria.v8i1a1849
[17]

Vennapusa AR, Agarwal S, Rao Hm H, Aarthy T, Babitha KC, et al. 2022. Stacking herbicide detoxification and resistant genes improves glyphosate tolerance and reduces phytotoxicity in tobacco (Nicotiana tabacum L.) and rice (Oryza sativa L.). Plant Physiology and Biochemistry 189:126−38

doi: 10.1016/j.plaphy.2022.08.025
[18]

Lage P, Silveira Junior MA, Ferreira EA, Pereira GAM, Silva EB. 2017. Interference of weed arrangement in bean growth. Revista De Agricultura Neotropical 4:61−68

doi: 10.32404/rean.v4i3.1568
[19]

Agostinetto D, Galon L, Silva JMBV, Tironi SP, e Andres A. 2010. Interference and economic weed threshold (Ewt) of barnyardgrass on rice as a function of crop plant arrangement. Planta Daninha 28:993−1003

doi: 10.1590/S0100-83582010000500007
[20]

Barroso AMA, Yamauti MS, Alves PLCA. 2010. Interference between weed species and two bean cultivars in two times of sowing. Bragantia 69:609−16

[21]

Fufa A, Tessema T, Bekeko Z, Mesfin T. 2023. Wild sunflower interference in common bean fields in the Central Rift Valley of Ethiopia. Agrosystems, Geosciences & Environment 6:e20377

doi: 10.1002/agg2.20377
[22]

de Brito IPFS, Marchesi BB, Pucci C, Carbonari CA, Velini ED. 2016. Variation in the sensitivities of hairy beggarticks (Bidens pilosa) plants and their progenies to glufosinate ammonium. Weed Science 64:570−78

doi: 10.1614/ws-d-16-00014.1
[23]

Portugal JM, Vidal RA. 2009. Economic levels of weed injury on crops: concepts, definitions and calculation models. Planta Daninha 27:869−77

[24]

Streck EV, Kämpf N, Dalmolin RSD, Klamt E, Nascimento PC, et al. (Eds.). 2018. Solos do Rio Grande do Sul. 3. Edition. Porto Alegre/RS: UFRGS: EMATER/RS-ASCAR. 251 pp.

[25]

Peel MC, Finlayson BL, McMahon TA. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11:1633−44

doi: 10.5194/hess-11-1633-2007
[26]

National Institute of Meteorology (Brazil). 2023. Meteorological data. Municipality of Erechim, RS, BR. www.inmet.gov.br/portal (Accessed 28 Oct. 2023

[27]

Vidal RA, Kalsing A, Gherekhloo J. 2010. Interference and economic threshold of Brachiaria plantaginea and Ipomoea nil in the common bean crop. Ciência Rural 40:1675−81

doi: 10.1590/s0103-84782010000800001
[28]

Galon L, Franceschetti MB, Portes JC, Toso JO, Brunetto L, et al. 2023. Interação competitiva e nível de dano econômico de azevém daninho em híbridos de canola. Revista de Ciências Agroveterinárias 22:414−28

doi: 10.5965/223811712232023414
[29]

Sociedade Brasileira de Ciência do Solo (SBCS). 2016. Liming and Fertilization Manual for the States of Rio Grande Do Sul and Santa Catarina. 11th Edition. Porto Alegre/RS: SBCS, Núcleo Regional Sul. 376 pp. www.sbcs-nrs.org.br/docs/Manual_de_Calagem_e_Adubacao_para_os_Estados_do_RS_e_de_SC-2016.pdf

[30]

Cousens R. 1985. An empirical model relating crop yield to weed and crop density and a statistical comparison with other models. Journal of Agricultural Science 105:513−21

doi: 10.1017/S0021859600059396
[31]

Lindquist JL, Kropff MJ. 1996. Applications of an ecophysiological model for irrigated rice (Oryza sativa) - Echinochloa competition. Weed Science 44:52−56

doi: 10.1017/S0043174500093541
[32]

Velini ED, Osipe R, Gazziero DLP. (Eds). 1995. Procedures for installation, evaluation and analysis of experiments with herbicides. Londrina: SBCPD. 42 pp.

[33]

Cargnelutti Filho A, Storck L. 2007. Evaluation statistics of the experimental precision in corn cultivar trials. Pesquisa Agropecuária Brasileira 42:17−24

[34]

Teixeira IR, Silva RP, Silva AG, Freitas RS. 2009. Competition between the common bean and weed in function of cultivar growth type. Planta Daninha 27:235−40

doi: 10.1590/S0100-83582009000200004
[35]

Jha P, Kumar V, Godara RK, Chauhan BS. 2017. Weed management using crop competition in the United States: A review. Crop Protection 95:31−37

doi: 10.1016/j.cropro.2016.06.021
[36]

Heap I. 2023. International survey of herbicide-resistant weeds. www.weedscience.org/Home.aspx (Acessed 30 Oct. 2023

[37]

Cury JP, Santos JB, Valadão Silva D, Carvalho FP, Braga RR. et al. 2011. Dry matter production and distribution of bean cultivars under weed competition. Planta Daninha 29:149−58

doi: 10.1590/S0100-83582011000100017
[38]

Sun C, Ashworth MB, Flower K, Vila-Aiub MM, Rocha RL, et al. 2021. The adaptive value of flowering time in wild radish (Raphanus raphanistrum). Weed Science 69:203−09

doi: 10.1017/wsc.2021.5
[39]

Matloob A, Ehsan Safdar M, Abbas T, Aslam F, Khaliq A. et al. 2020. Challenges and prospects for weed management in Pakistan: A review. Crop Protection 134:104724

doi: 10.1016/j.cropro.2019.01.030